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Abstract
The employment of high-performance servers and GPU ac-
celerators for training deep neural network models have
greatly accelerated recent advances in deep learning (DL). DL
frameworks, such as TensorFlow, MXNet, and Caffe2, have
emerged to assist DL researchers to train their models in a dis-
tributed manner. Although current DL frameworks scale well
for image classification models, there remain opportunities
for scalable distributed training on natural language process-
ing (NLP) models. We found that current frameworks show
relatively low scalability on training NLP models due to the
lack of consideration to the difference in sparsity of model
parameters. In this paper, we propose Parallax, a framework
that optimizes data parallel training by utilizing the sparsity
of model parameters. Parallax introduces a hybrid approach
that combines Parameter Server and AllReduce architectures
to optimize the amount of data transfer according to the
sparsity. Experiments show that Parallax built atop Tensor-
Flow achieves scalable training throughput on both dense
and sparse models while requiring little effort from its users.
Parallax achieves up to 2.8x, 6.02x speedup for NLP models
than TensorFlow and Horovod with 48 GPUs, respectively.
The training speed for the image classification models is
equal to Horovod and 1.53x faster than TensorFlow.
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1 Introduction
It is a common practice nowadays for deep learning (DL)
practitioners to utilize a cluster of GPU resources for train-
ing deep neural networks. This is mainly motivated by the
fact that recent deep neural network architectures involve
very large computations [16, 37, 43] and are trained on large
datasets [6, 32], typically requiring multiple GPUs in order
to finish training within a reasonable time limit. There are
a few parallelization strategies for accelerating training on
multiple GPUs: running multiple model replicas that pro-
cess disjoint datasets (data parallelism), partitioning a single
model among multiple devices (model parallelism), and a
mixture of the previous two strategies (hybrid parallelism).
Among these techniques, data parallelism is the most widely
used thanks to its simplicity [12, 18, 37], and is supported by
most DL frameworks such as TensorFlow [1], PyTorch [29],
MXNet [8], Caffe2 [11], and Horovod [34], to increase train-
ing throughput by processing data in parallel.

There are a number of recent works that push the limit of
data parallel training [2, 12, 17, 20], achieving near-perfect
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throughput scaling efficiency1 of 99.2% with thousands of
GPUs [17]. However, all of these works focus on paralleliz-
ing image classification models. Little attention has been
paid to training models from other domains, namely natu-
ral language processing (NLP) models. In fact, we observed
that using TensorFlow [1] to train NMT [43] and LM [18]
– NLP models for neural machine translation and language
modeling, respectively – with 48 GPUs leads to scaling effi-
ciencies of only 19.0% and 7.0% (Section 6). Current solutions
to data parallel training are inadequate for handling a cer-
tain characteristic of these NLP models: sparsity of model
parameters.
Multi-dimensional arrays that hold the parameters of a

DL model can be classified into dense variables and sparse
variables2, depending on how their elements are accessed.
For a dense variable, all elements are accessed at least once
during a single training iteration. On the other hand, for a
sparse variable, only a subset of the elements are accessed
in one iteration. Image classification models, such as the
Inception-V3 [37] model, usually consist solely of dense vari-
ables for convolutional layers and fully connected layers. We
refer to such models as dense models. In contrast, NLP models
have both dense variables and sparse variables. For instance,
the aforementioned LM [18] model uses dense variables for
internal long short-term memory (LSTM) cell parameters
and sparse variables for word embeddings. We define such
models as sparse models.
Sparse models tend to have larger variables than dense

models, and must be dealt with differently in terms of param-
eter synchronization to maintain reasonable scalability. For
example, the largest variable in the dense model Inception-
V3, weight of the fully connected layer, has 2.05 million ele-
ments, while the largest variable in the sparse model LM, the
embedding matrix, has 406 million elements. Synchronizing
a large variable across multiple GPUs requires significant
network bandwidth and consumes many CPU clocks for ag-
gregating results from GPUs. Thus, naïvely communicating
all elements of a large sparse variable, even though only a
small subset is accessed, results in relatively low scalability.
At the same time, however, treating all variables as sparse
variables is inefficient, as there are highly optimized imple-
mentations for communicating dense variables across GPUs
such as the NCCL [27] library.
In this paper, we introduce Parallax, a framework that

takes the sparsity of variables into account to optimize data
parallel training.We analyze how the amount of data transfer
changes according to whether variables are sparse or dense
in two different training architectures: Parameter Server and

1Scaling efficiency measures the percentage of speedup (in terms of
throughput) in distributed training compared to the ideal, linear speedup
when the same amount of GPUs are used.

2We use the term variable, following TensorFlow. A sparse/dense vari-
able is different from a sparse/dense array, which has its own mathematical
meaning regarding the number of nonzero elements.
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Figure 1. The Parameter Server architecture and the AllRe-
duce architecture.

AllReduce. Based on this analysis, Parallax pursues a hybrid
approach that uses the Parameter Server architecture for
handling sparse variables and the AllReduce architecture for
handling dense variables. Moreover, Parallax partitions large
sparse variables by a near-optimal number of partitions to
maximize parallelism while maintaining low computation
and communication overhead. Parallax further optimizes
training with local aggregation and smart operation place-
ment to mitigate communication overhead. Graph transfor-
mation in Parallax automatically applies all of these optimiza-
tions and the data parallel training itself at the framework
level to minimize user efforts for writing and optimizing a
distributed program by composing low-level primitives.
We have implemented Parallax on top of TensorFlow [1]

1.6 with Horovod [34] 0.11.2. Experiments on two sparse
NLP models, LM [18] and NMT [43], and two dense image
classification models, ResNet-50 [16] and Inception-V3 [37],
show that Parallax can speed up DL training of sparse mod-
els while achieving similar performance to state-of-the-art
frameworks on dense models. Parallax achieves up to 2.8x
and 6.02x speedup for the NLP models compared to Tensor-
Flow and Horovod on 48 GPUs, respectively. The training
speed for the image classification models is equal to Horovod
and 1.53x faster than TensorFlow. Although we used NLP
models for our evaluation to demonstrate the effectiveness of
sparsity-aware data parallel training, Parallax’s techniques
can be applied to any sparse model, such as speech recog-
nition [5, 10] and graph neural networks [19]. Even more,
the performance gain is earned with absolutely no manual
optimizations from the user – merely a few lines of code are
needed to use the Parallax API.
The rest of the paper is organized as follows. Section 2

describes the DL background related to Parallax and the mo-
tivation of utilizing model sparsity to optimize distributed
training, while Section 3 introduces two sparsity-aware tech-
niques of Parallax. Sections 4 and 5 present the design and
implementation of Parallax. Section 6 presents evaluation
results. Section 7 presents related work and Section 8 con-
cludes.
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2 Background and Motivation
In this section, we briefly discuss data parallel distributed
training and its two representative architectures: Parameter
Server and AllReduce. We also explain the motivation for
takingmodel sparsity into account when training a DLmodel
in a distributed manner.

2.1 Data Parallel Distributed Training
A DL model refers to a neural network architecture, which
is trained via gradient descent; the loss value of the model is
calculated from forward computations, and the loss is passed
back through the model according to the backpropagation
algorithm to compute gradients. These gradients are then
used to update corresponding variables that compose the
neural network. Data parallel distributed training is utilized
to process several mini-batches simultaneously with multi-
ple GPUs. GPUs are set to perform the same computation
on different mini-batches, each producing a unique set of
gradients. In case of asynchronous training, the gradients
from one GPU are used to update variables without waiting
for other GPUs. On the other hand, for synchronous train-
ing, all GPUs wait for one another to finish their gradient
computation for variables. Then, the computed gradients are
aggregated before being used to update corresponding vari-
ables. For both asynchronous and synchronous training, data
communication between GPUs and machines is necessary
to share the computed gradients.

For asynchronous training, the staleness of model variable
updates is known to negatively impact the model’s accuracy
and produce relatively unpredictable results [7, 13, 45]. Thus,
many DL models are trained synchronously [12, 28, 36, 43].
This paper also assumes synchronous training, although we
note that Parallax supports both synchronous and asynchro-
nous training.

Data Parallel Training Architectures Two widely-used
data parallel distributed training architectures are the Pa-
rameter Server (PS) [21] architecture and the AllReduce
(AR) architecture. The PS architecture, initially proposed
for topic modeling [21], has been extensively used in pre-
vious works [1, 8, 9] thanks to the scalable structure that
allows a large set of variables to be distributed into multiple
machines. A typical PS architecture consists of server and
worker processes as described in Figure 1(a). Server processes
store subsets of model variables (V1, ... , V4) in memory, while
worker processes pull variables from servers to perform local
computations on their respective mini-batches (X 1,X 2,X 3)
and later push gradients with respect to variables back to
servers. As a result, variable synchronization between work-
ers is done indirectly via server processes.

For the AR architecture, there is no process dedicated just
for holding variables, as shown in Figure 1(b). Rather, all
workers are given a replica of variables and share locally
computed gradients via collective communication primitives

such as AllReduce [25, 30] and AllGatherv [39]. AllReduce
reduces values from all processes to a single value, while
AllGatherv simply gathers the values from all processes.
More formally, for the gradient ∂L

∂v (Xi ) of a loss function
L with respect to a variable v given a mini-batch data Xi ,
where worker i processes Xi (i ∈ 1, ...,N ), AllReduce ag-
gregates gradients from all workers by computing the sum
of gradients

∑N
i=1

∂L
∂v (Xi ). On the other hand, AllGatherv

aggregates gradients by concatenating the gradients into
[ ∂L∂v (X1), ...,

∂L
∂v (XN )]. Then, these primitives broadcast the

aggregated gradients back to all processes. The replica of
variables housed in each worker is updated using the aggre-
gated gradients, thereby all replicas in different workers are
always synchronized. This collective mechanism makes data
parallel training simple because all workers always have
the same variable values, thus there are no synchronization
issues regarding variable updates. Since the AR architecture
is easier to use and shows better performance compared to
the PS architecture for image classification models [34, 35],
recent attempts to scale out DL training [2, 12, 17, 20] employ
AR as their distributed training architecture.

A major collective communication implementation used
for the AR architecture is NCCL [27], a well-known collec-
tive communication library that takes advantage of the GPU
topology within and across multiple machines. Depending
on how GPUs are connected in a machine and across ma-
chines, NCCL composes different ring structures to achieve
better performance. It provides a highly optimized commu-
nication implementation, which is especially effective when
the GPUs in the cluster support GPUDirect P2P or GPUDirect
RDMA [26]. Most DL frameworks that support distributed
training, such as TensorFlow [1], PyTorch [29], MXNet [8],
Caffe2 [11] and Chainer [38], adopt NCCL as their collective
communication implementation.

2.2 Necessity of Sparsity-awareness
Although existing DL frameworks demonstrate scalable per-
formance for data parallel training on large GPU clusters,
their results are mostly based on well-known image classifi-
cation models; there still remain untapped opportunities for
scaling distributed training for models with sparse variables.
A representative example of a sparse variable would be an
embedding matrix, which maps a word to an embedding
vector. Since sentences in a mini-batch typically include only
a subset of an entire vocabulary list, only the corresponding
rows of the embedding matrix is read and updated at each
iteration. For efficient memory management and computa-
tion, most DL frameworks provide special data structures
for handling sparsity. Instead of using a single array to rep-
resent sparse data such as a gradient of a sparse variable,
two separate arrays are used – one for the actual values,
and another for indicating the value indices within the data,
similar to the compressed sparse row (CSR) format [33]. For
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Models
# Elements

αmodel
Throughput

Dense Sparse PS AR

ResNet-50 23.8M 0 1 5.8k 7.6k
Inception-v3 25.6M 0 1 3.8k 5.9k
LM 9.4M 813.3M 0.02 98.9k 45.5k
NMT 94.1M 74.9M 0.65 102k 68.3k

Table 1. The total size of dense and sparse variables, αmodel ,
and the training throughput (images or words per sec) of
PS and AR architectures for four DL models, including two
image classification models (ResNet-50, Inception-v3) and
two NLP models (LM, NMT). The experiments are conducted
on 48 GPUs using the cluster environment, datasets, and
batch sizes described in Section 6. The PS column shows the
results of TensorFlow using the PS architecture, and the AR
column shows the results of Horovod using AllReduce for
dense variables and AllGatherv for sparse variables.

example, TensorFlow [1] manages dense data using a Tensor
abstraction, while sparse data correspond to IndexedSlices
or SparseTensor that contain two Tensors to hold nonzero
indices and values separately.

We claim that just like the data structures for sparse data,
distributed data parallel training should also be aware of the
different characteristics of dense and sparse variables. To
support this statement, we conducted experiments to show
how the performance trend of training sparse models differs
from that of dense models, regarding the underlying training
architecture as well as partitioning variables for the appro-
priate architecture. Moreover, this claim is further backed by
researches from the machine learning community that em-
ployed data parallel training to train sparse models [18, 43].

Choosing Appropriate Training Architectures Table 1
shows that the sparsity of a model is an important factor
when selecting a distributed training architecture. It depicts
the training throughput of four DL models along with their
variable sizes and a ratio factor αmodel that describes how
sparse the model parameters are. αmodel is a weighted sum of
α values of variables in the model, where the weight of each
variable is proportional to its number of elements. We define
the α value of a variable as the average ratio of the number of
elements that are actually used by a worker in one iteration
to the total number of elements. The first two models in the
table, ResNet-50 and Inception-v3, are dense models and thus
they do not contain sparse variables. The next two models,
LM and NMT, are sparse models, containing both dense and
sparse variables.
Results show that the AR architecture is preferable for

dense models, while the PS architecture performs better for
sparse models. This is because different distributed training
architectures use network bandwidth in different ways; we

Model
# Partitions

8 16 32 64 128 256

LM 50.5k 78.6k 96.5k 96.1k 98.9k 93.2k

NMT 90.7k 97.0k 96.5k 101.6k 98.5k 100.0k
Table 2. Training throughput (words/sec) according to the
number of partitions for LM and NMT models, using the PS
architecture. The experiment setup is the same as Table 1.

discuss this further in Section 3.1. To the best of our knowl-
edge, no prior work considers the sparsity of models when
selecting the distributed training architecture.

Impact of Partitioning Sparse Variables When using
the PS architecture, it is common to partition large vari-
ables into multiple pieces to overcome memory constraints
or to reduce load imbalance between server processes. How-
ever, even when the memory requirements are satisfied and
there is no significant load imbalance present, the number of
partitions of sparse variables can affect overall performance.

Table 2 shows the throughput of training the sparse mod-
els, LM and NMT, on various numbers of sparse variable par-
titions using the PS architecture. Although all cases satisfy
memory constraints and avoid significant load imbalance,
the performance improvement for using the best possible
choices (128 and 64 partitions for LM and NMT, respectively)
and the worst possible choices (8 partitions for both models)
is meaningful for both models; 1.98x for LM and 1.12x for
NMT. It is also worth noting that blindly increasing the num-
ber of partitions is not optimal, as the throughput at 256 par-
titions is worse than at 128 partitions in the LM model. The
performance improvement comes from the parallelization of
operations for sparse variables; we describe the reasons for
speedup in detail in Section 3.2.

3 Sparsity-aware Data Parallel Training
Motivated by the experiment results in Section 2.2, we pro-
pose two sparsity-aware techniques to improve the perfor-
mance of distributed training for sparse models: 1) a hybrid
architecture of PS and AR, and 2) automatic searching of the
optimal number of sparse variable partitions.

3.1 Hybrid Architecture
As shown in Table 1, the training speeds of the PS and AR
architectures are affected by model sparsity. The PS architec-
ture performs faster when the model is sparse, while the AR
architecture shows better performance when the model is
dense. We analyze this trend further by formulating the size
of data transferred across the network during one training
iteration for both architectures.
Figure 2 shows how each training architecture synchro-

nizes progress from multiple workers, for dense and sparse
4
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Figure 2. Data transfer for each type of variable and its gradient from/to a machine according to the training architecture.
Bars with solid edge represent variables, while bars with dotted line represent gradients. Gradients of a dense variable from
different workers are reduced by computing a sum of the gradients, while gradients of a sparse variable are aggregated by
concatenating the arrays.

variables. To simplify the explanation, we assume each ma-
chine contains only one worker process, and a server pro-
cess is colocated with the worker in the PS architecture case.
Moreover,w refers to the average size of variables as bytes,
N is the number of machines, and α is the element ratio of
variables defined in Section 2.2.

Regarding a single dense variable in the PS architecture, a
server process sendsw bytes to N − 1 machines each, result-
ing in a network transfer ofw (N − 1) bytes (Figure 2(a) 1⃝).
The network cost for a server process occurs only for N − 1
machines instead of all N machines because server and
worker processes in the same machine communicate locally
within the machine without involving network communica-
tion. Similarly, the server receives gradients of the same size
back from the N − 1 machines, leading to anotherw (N − 1)
bytes (Figure 2(a) 2⃝). Thus, for a single dense variable, the
machine that houses the corresponding server sends and
receives a total of 2w (N − 1) bytes of data over the network
for each iteration. The network transfer for a sparse variable
(Figure 2(b)) is similar to the dense variable case; as defined
in Section 2.2, each worker utilizes α of the elements in a
sparse variable (in average), so they fetch αw bytes from
the server and push back the same amount of gradients to
the server.3 Therefore, the amount of network transfer for a
sparse variable becomes 2αw (N − 1).

The data transfer behavior of the AR architecture varies de-
pending on the actual algorithm implementation of AllReduce
and AllGatherv being used. Here, we assume the ring algo-
rithm [31], one of themost popular collective communication
algorithms, which is used in the NCCL library. Regarding a
single dense variable, each worker sends and receivesw/N

3We omitted the network transfer for exchanging nonzero indices since
it is negligible in most cases compared to nonzero values.

Type Arch One Variable m Variables

Dense
PS 2w (N − 1) 4wm N−1

N

AR 4w N−1
N 4wm N−1

N

Sparse
PS 2αw (N − 1) 4αwm N−1

N

AR 2αw (N − 1) 2αwm(N − 1)
Table 3. The amount of network transfer required per ma-
chine for each type of variable according to the training
architecture.

bytes of data for 2(N − 1) communication steps, where gra-
dients are reduced for the first N − 1 steps and the reduced
values are broadcast back to all workers for the next N − 1
steps. Figure 2(c) shows the algorithm for one communi-
cation step, in which 2w/N bytes are going into and out
of a single worker via network transfer. Repeating this for
2(N − 1) steps, we get a grand total of 4w (N − 1)/N bytes
for a machine. On the other hand, for a sparse variable, each
worker sends and receives αw bytes of data for N − 1 com-
munication steps in order to AllGatherv gradients for that
variable (Figure 2(d)), resulting in 2αw (N − 1) bytes of net-
work transfer for each machine. The One Variable column of
Table 3 summarizes these discussions about network transfer
for a single variable, depicting all possible combinations of
dense or sparse variables and the PS or AR architectures.
Moving from one variable to multiple variables, we add

additional assumptions about the variable distribution across
servers.We assume that all variables occupy the same amount
of memory (w bytes) and are distributed evenly across server
processes. In such a balanced PS architecture, each machine
manages m

N dense variables wherem is the number of dense
variables in a model. For the m

N variables that a machine
manages, a total of 2w (N − 1) × m

N bytes of network transfer
5
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occurs; for the otherm − m
N variables that the machine does

not manage, 2w × (m − m
N ) bytes of transfer occur since the

machine needs to fetchw bytes for each variable and send
anotherw bytes for each corresponding gradient. Thus, the
amount of network transfer per machine form dense vari-
ables becomes 2w (N − 1) × m

N + 2w × (m − m
N ) = 4wm N−1

N .
Similarly, each machine requires 4αwm N−1

N bytes of network
transfer in order to synchronizem sparse variables.
Unlike the PS architecture, all variables in the AR archi-

tecture are housed by all workers, and thus are present in
all machines. Thus, we can simply derive the total amount
of network transfer per machine by multiplyingm with the
amount of network transfer for a single dense or sparse
variable, giving us 4wm N−1

N and 2αwm(N − 1) bytes, respec-
tively.
Both PS and AR architectures require the same amount

of network transfer for a machine, withm dense variables.
However, the amount required for a single dense variable
that is managed by the machine is much larger in the PS
architecture. The machine that manages the variable needs
to handle 2w (N − 1) bytes of network transfer, compared to
2w bytes of other machines. This difference can possibly lead
to a communication bottleneck in the machine in charge of
the variable, while network bandwidth for other machines is
under-utilized. We anticipate this asymmetry between ma-
chines to be the root cause of the performance difference
between PS and AR architectures. Since a DL model com-
prises multiple layers and there are dependencies between
them, pull and push requests for variables in different layers
are scattered along the timeline. On the other hand, there is
no such asymmetric network transfer for the AR architecture,
and therefore no particular machine becomes a bottleneck.
Recent studies [34, 35] show that the NCCL-based AR archi-
tecture achieves higher performance on dense models such
as ResNet-50 [16], Inception-v3 [37], and VGG-16 [36].
For sparse variables, exchanging gradients using the AR

architecture requires much more data transfer compared
to the PS architecture. As N becomes larger, the difference
between the two architectures becomes more significant.
Based on the analysis, we propose a hybridization of the

two architectures to achieve the best of both worlds. Parallax
employs a hybrid architecture in which the AR architec-
ture handles dense variables and the PS architecture handles
sparse variables. Each worker has a replica of dense vari-
ables, while separate server processes manage only sparse
variables. Note that if the α value of a sparse variable is close
to 1, then it may be helpful to handle the variable as a dense
variable and use AllReduce, even though it requires 1

α times
larger network transfer compared to the PS architecture. In
this case, α should be large enough to make the gain from
efficient network utilization of the AR architecture surpass
the overhead of extra network transfer.

3.2 Partitioning of Sparse Variables
As stated in Section 2.2 and Table 2, partitioning sparse vari-
ables can affect training throughput. The fact that the per-
formance goes up as the number of partitions increases up
to 128, without any significant load imbalance, implies that
there is inevitably another factor that contributes to the im-
provement.

We found that partitioning sparse variables effectively par-
allelizes the aggregation of the corresponding gradients, as
well as the variable update operations. Gradient aggregation
and update operations for sparse variables require iterating
through nonzero indices one by one to accumulate values
with the same index. Partitioning a sparse variable paral-
lelizes these operations by dividing incoming values and
indices into disjoint sets, and thus enables the parallel execu-
tion of such operations. Meanwhile, increasing the number
of partitions introduces additional overhead for stitching the
partial results from each partition into one tensor to be used
as input for other operations [1]. It is also accompanied with
the overhead of managing each partition of the variable as
separate arrays. These aspects are related to not only the
DL model itself, but also the hardware specification of the
cluster and batch size; simple rule-based heuristics are not
able to find a reasonable optimum for various conditions.
To capture these effects, we suggest a cost-based model

that predicts iteration time as a function of the number of
partitions P :

iter_time = θ0 + θ1 ∗
1
P
+ θ2 ∗ P (1)

Parameter θ0 represents the constant cost for fixed computa-
tion and communication, which does not change over P . θ1
captures the cost that can be parallelized and amortized by
increasing P , while θ2 represents the overhead incurred by
partitioning sparse variables.
Parallax collects data points required to fit Equation 1

by performing actual training with different values for P ,
for a few iterations.4 Then, we fit the equation using mean-
squared error of the sampled iteration time and prediction.
In order to reduce the number of samples while maintaining
high accuracy, Parallax exploits the fact that Equation 1 is
a convex function of P . Setting P ’s initial sample point to
be the number of machines, Parallax collects the iteration
time for P while doubling the value until the iteration time
starts to increase. Next, Parallax repeats the process while
halving P , again until the iteration time starts to go up. The
critical point of the convex function is located between the
minimum and maximum Ps of the collected data, hence the
cost model can predict the optimal P without performing
any extrapolation.

4Parallax runs 100 iterations and discards values from the first 50
iterations to eliminate startup cost.
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1 import parallax

2
3 # create a graph as distributed version

4 with single_gpu_graph:

5 ds = input_files_dataset()

6 ds = parallax.shard(ds)

7 en_texts , de_texts = ds.get_input_data()

8
9 with parallax.partitioner():

10 emb_enc = get_variable(shape=[...])

11 emb_dec = get_variable(shape=[...])

12 loss = build_NMT_model(en_texts , de_texts ,

13 emb_enc, emb_dec)

14 grads_and_vars = compute_grads(loss)

15
16 opt = GradientDescentOptimizer(LR=0.1)

17 train_op = opt.update(grads_and_vars)

18
19 graph_runner = parallax.get_runner(

20 single_gpu_graph,

21 resource_info_file,

22 parallax_config)

23
24 for i in range(num_iters):

25 graph_runner.run(train_op)

Figure 3. Example code for training the NMT model in
a distributed multi-GPU environment with Parallax. Red
lines represent the necessary modifications for adding Par-
allax: shard for splitting the input data for data paral-
lelism, partitioner for partitioning sparse variables, and
get_runner for performing automatic parallelization.

4 System Design
Parallax is a sparsity-aware data parallelization framework
built on TensorFlow [1], a state-of-the-art DL framework.
Parallax enables users to utilize distributed multi-GPU envi-
ronments when they have a single-GPU computation graph
(i.e., a deep learning model developed for training on a sin-
gle GPU). It guarantees transparency while keeping scal-
able performance using a hybrid architecture with optimally
partitioned sparse variables. For the transparency, users do
not need to write new code for data parallel training that
requires prior knowledge for training architectures and spar-
sity of variables. Instead, the framework provides an API
that receives a single-GPU computation graph as input and
automatically transforms the graph into a multi-GPU, multi-
machine computation graph.

4.1 Programming Interface
Parallax provides simple programming interfaces: shard,
partitioner, and get_runner. Unlike single-GPU training,

input data must be divided into disjoint subsets to be pro-
cessed by different GPUs for data parallel distributed training.
Parallax helps this process with the shard API, which re-
ceives input data and splits the data into multiple subsets so
that each GPU can read a unique subset. When exploration
for optimal partitioning is required through partitioner,
the variables within partitioner context are partitioned
using an optimal number of partitions searched by Paral-
lax. get_runner is the main interface that accepts a single-
GPU graph as well as resource information including the
IP addresses (or hostnames) of machines and GPU IDs, and
an optional Parallax configuration (ParallaxConfig) object
specifying extra arguments if needed. The configuration in-
cludes whether to use local aggregation or not, a file path
to save trained variables and aggregation methods for each
type of variable indicating whether to compute the average
of gradients for dense (or sparse) variables over all GPUs or
to compute the sum instead.

We illustrate how to use the Parallax API with a code snip-
pet example for training the NMT [43] model, a DL model for
language translation. Figure 3 shows code for training the
NMT model on a GPU cluster. Parallax requires three modi-
fications compared to a corresponding single-GPU training
code: splitting input data across GPUs (line 6), creating par-
titioned variables using partitioner (line 9), and creating
Parallax’s graph_runner instead of the original framework’s.
First, a graph object is declared, single_gpu_graph, which
is followed by the logic for preprocessing input data, the loss
function, the gradients from backpropagation, and the gradi-
ent descent method for updating the variables (lines 4-17).
The input data must be split across GPUs for data parallelism,
and this can be accomplished with the shard interface. The
ds object in line 5 represents the whole input data, while
the ds object returned by shard in line 6 is a unique sub-
set of dataset for a model replica. Next, users can create
partitioned variables using partitioner in line 9. Parallax
finds and applies the optimal partitioning for the variables
(emb_enc and emb_dec). Note that each partitioner parti-
tions variables into the same number of partitions. When
the user wants to partition variables in different granular-
ities, multiple partitioners must be created and applied
independently. Then, the computation graph is transformed
to be executable on multiple GPUs through the get_runner
interface. In lines 19-22 and line 25, the graph_runner ob-
ject returned by the get_runner interface should be used in
place of the graph runner of the original framework, since it
is not aware of the fact that the computation graph has been
converted for a distributed multi-GPU environment.
In the existing frameworks [1, 8], users must use differ-

ent APIs for constructing computation graphs depending on
whether the training is done on a distributed environment
or only on a single GPU. For example, a user that wants to
train a model using TensorFlow’s PS architecture must be
aware of two types of processes - server and worker - and
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insert mechanisms for gradient aggregation and synchro-
nization. Meanwhile, Parallax lets users recycle almost the
same single-GPU code for constructing computation graphs
on distributed environments, allowing easier utilization of
multiple GPUs. We discuss this point further in Section 7.

4.2 Execution Model
We outline the overall execution model of Parallax as fol-
lows. After a client initiates a job with a computation graph
and resource information, Parallax analyzes the computation
graph to construct hybrid architecture. If the graph only con-
tains dense variables, Parallax launches workers as many as
the number of GPUs. On the other hand, if sparse variables
are included in the graph, Parallax launches a server pro-
cess for each machine and a worker process for each GPU.
When the processes are launched, the number of partitions
for sampling is passed to the workers. Worker processes
transform the input graph to a distribute version and run
for a small number of iterations on the given resources. Dur-
ing the graph transformation step, Parallax separates dense
and sparse variables and creates a distributed graph for AR
and PS architectures (if necessary). Then, each worker sends
its execution time to the master process which collects ex-
ecution time according to the number of partitions. This
process is repeated until sampling for variable partitioning
ends. Finally, Parallax executes the transformed graph with
optimally partitioned sparse variables. Next, we explain the
details of graph transformation.

4.3 Automatic Graph Transformation
Parallax carries out the transformation process adhering
to several specific rules systemically as a substitution of
user’s manual modifications from a single-GPU graph to a
distributed version. Parallax builds transformation rules for
AR and PS architectures while maintaining transparency,
correctness and scalability, and these rules are combined for
hybrid architecture. Note that the transformation rules do
not automate hyperparameter tuning to find optimal hyper-
parameters such as learning rate or batch size. Parallax uses
hyperparameters that are given from the input graph.

Transformation for AR Figure 4 shows graph transfor-
mation for AR architecture. It is relatively straightforward
compared to the transformation for PS because each device
carries individual copies of global states (i.e., variables) and
does not access states on the other devices. Parallax repli-
cates all operations in the original single GPU graph and
places a replica for each GPU in the resource specification.
The transformation is simple because of the homogeneity
of all the processes (workers) that participate in training,
unlike the PS architecture. Parallax automatically identifies
gradients using information in a single-GPU graph to satisfy
a transparent graph transformation. To aggregate gradients
across devices, AllReduce operations take place between
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Figure 4. Graph transformation for AR architecture. In this
example, the transformed graph uses AllReduce to aggre-
gate gradients.
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Figure 5. Graph transformation for PS architecture.

operations that produce gradients using backpropagation
(Grads) and their successors (Models).

Transformation for PS Parallax supports an optimized
PS architecture using local aggregation and assigning opera-
tions effectively across machines. Consequently, the graph
transformation rules for PS are defined based on the opti-
mized PS. Parallax transforms a single-GPU graph for PS
architecture by creating a copy of forward and backward
graph operations for each worker and distributing variables
and their update operations across servers. Parallax applies
different replication and operation placement policies to
variables, variable update operations, and main computa-
tion operations. Figure 5 shows an example of the graph
transformation. Parallax launches a (parameter) server on
each machine and a worker on each GPU in the given re-
source specification. This colocation of workers and a server
in a machine works well since workers are GPU-intensive
while servers run lightweight computation, which runs only
on CPUs. Parallax evenly distributes variables (VariableN)
across servers, and a large variable is partitioned to multiple
pieces if the variable is specified as a partitioning target in

8



Parallax: Sparsity-aware Data Parallel Training of DNNs EuroSys ’19, March 25–28, 2019, Dresden, Germany

Sparse Variable

Sparse Grads

Dense Variable

Worker

Model

GPU

All
Reduce

Dense Grads

Local
Agg

Local
Agg

Update
Global 
Agg

Server

Machine

Worker

Model

GPU

All
Reduce

Worker

Model

GPU

All
Reduce

Local
Agg

Local
Agg

Update
Global 
Agg

Server

Machine

Worker

Model

GPU

All
Reduce

Figure 6. Graph transformation for hybrid architecture.

the code. Each partitioned piece has a partitioned gradients
aggregation and a partitioned update operation. Parallax as-
signs update operations (UpdateN) in the same server with
their variables to be updated. Identifying model variables
and their update operations is feasible because DL frame-
works [1, 4, 8, 11] treat them differently from mathematical
operations, such as add or multiplication. Main computation
operations that are used to compute gradients are replicated
as many as the number of GPUs. Model and Grads represent
operations for forward computation and backpropagation,
respectively. Along with the detection of gradients, Paral-
lax identifies main computation operations by searching
all the ancestor operations from the gradients in the graph.
Gradients from each GPU are aggregated twice using aggre-
gation operations for GPUs within a machine (LocalAggN)
and between machines (GlobalAggN). The local aggrega-
tion reduces the amount of data communication between
workers and servers, which is more expensive than commu-
nication between GPUs in the same machine. The outputs
of GlobalAggN are used to update model variables. Paral-
lax places a global aggregation operation (e.g., GlobalAgg1)
on the same server with the variable (e.g., Variable1) to
minimize data transfer between machines.

Transformation for Hybrid Figure 6 shows the trans-
formed graph for hybrid architecture. Regardless of architec-
tures, main computations (Models and Grads) are replicated
in each GPU. Then, Parallax separates dense and sparse vari-
ables using the different data structures to handle gradients
of each type. Finally, a sparse variable follows PS transfor-
mation rules while AR transformation rules are applied to a
dense variable. The sparse variables are shared via server pro-
cesses and global aggregation methods are inserted between
locally aggregated gradients from each machine and update
operations. The dense variables replicated in each worker
are updated using the aggregated gradients from AllReduce.

Because each variable is synchronized independently, apply-
ing different rules to each type of variables completes graph
transformation for hybrid architecture.

5 Implementation
We implemented Parallax on TensorFlow [1] v1.6with AllReduce
operation using NCCL in Horovod [34] v0.11.2. We imple-
mented the graph transformation and distributed execution
in Python.

Identifying the sparsity of a variable In TensorFlow,
dense and sparse variable are distinguished by the differ-
ent types of their gradient tensors. The type is determined
when the gradient tensor is generated by automatic differen-
tiation, depending on how the variable is used in the forward
computation. For example, TensorFlow creates a sparse type
gradient tensor for a variable used in a sparse access opera-
tion, gather. Parallax uses this type information to identify
if a variable is either sparse or dense.

Graph transformation Graph transformation of Parallax
consists of inserting gradient aggregation operations for
sparse variables and placing operations to specific resources.
Placing operations can be done with the tf.device API.
However, aggregating gradients requires additional steps as
follows. We first place accumulators on servers to aggregate
the gradients of sparse variables, where each accumulator
handles gradients of a single sparse variable. When gradients
are aggregated in an accumulator, a worker asks the server
to read the aggregated gradient from the accumulator and
update the corresponding variable.
To provide correct variable updates as done in a single-

GPU code, Parallax ensures that only one worker, namely
a chief worker, triggers the operations for reading aggre-
gated gradients and updating variables. The other workers
wait until these variable update operations are finished. The
chief’s notification arrives through shared queues on each
worker. If the other workers also need aggregated gradi-
ents to trace their status during training or to compute a
global norm of gradients for clipping, Parallax changes the
worker-side graphs to read the aggregated gradients from
the variables where the chief worker saves them temporarily
after reading from accumulators. In case of local aggregation,
Parallax adds additional accumulators to each machine, and
a worker in the machine becomes a local chief worker to
collect gradients within a machine and send them to servers.

In addition, we modified the TensorFlow core to store gra-
dients information, which is the result of auto-differentiation
for model variables, in MetaGraphDef protobuf in Tensor-
Flow. The modified MetaGraphDef enables Parallax to track
exact mapping between model variables and their gradients.
Parallax uses this information for inserting gradient aggre-
gation operations.
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Figure 7. Convergence results. (a) Top-1 validation error of ResNet-50. (b) Test perplexity of LM. (c) BLEU score of NMT.
The vertical lines represent where each framework reaches the same target value for Top-1 validation error, test perplexity, or
BLEU score. The target values are 23.74% for ResNet-50, 47.5 for LM, and 22.5 for NMT.

6 Evaluation
We evaluate Parallax with experiments to answer the follow-
ing questions:

• Does Parallax correctly transform computation graphs
and improve convergence speed using the sparsity-
aware data parallel training? (Section 6.2)
• Does Parallax scale out well to multiple GPUs and
machines? (Section 6.3)
• How much performance benefits do Parallax’s opti-
mization techniques provide? (Sections 6.3, 6.4 and
6.5)
• How does Parallax’s performance change under vari-
ous sparsity degrees? (Section 6.6)

6.1 Experiment Setup
Cluster Configuration. We conducted all the experiments
on a GPU cluster of 8 machines. Each machine is equipped
with two 18-core Intel Xeon E5-2695 @ 2.10 GHz processors
with 256 GB RAM and 6 NVIDIA GeForce TITAN Xp GPU
cards. The machines are connected via Mellanox ConnectX-
4 cards with 100Gbps InfiniBand. They run Ubuntu 16.04,
CUDA 9.0, cuDNN 7, OpenMPI v3.0.0, and NCCL v2.1.

Frameworks. As baselines, we selected TensorFlow v1.6
as a representative DL framework for the PS architecture,
and Horovod [34] v0.11.2 on TensorFlow for the AR archi-
tecture. In the evaluation, TF-PS denotes TensorFlow with
PS. We let Horovod use NCCL for AllReduce since NCCL
provides highly-optimized communication between GPUs
compared to OpenMPI. However, we inevitably use OpenMPI
for AllGatherv, which is not provided by NCCL.
Models and Datasets. We trained two image classifica-

tion models and two NLPmodels in our experiments. ResNet-
50 [16] and Inception-v3 [37], are trained with the ImageNet
(ILSVRC 2012) [32] dataset that has 1.28M training images
and 50K validation images in 1000 categories. LM [18] is a
language model that learns a probability distribution over

sequences of words in a language. It consists of a single
layer of LSTM with hidden state of size 2048, projected to
a 512-dimensional embedding. We trained the LM model
on the One Billion Word Benchmark [6] that contains one
billion words with the vocabulary size of 800K. NMT [43] is
a machine translation model, composed of 8-layer LSTMs of
1024 units with a bidirectional encoder of 1024-dimensional
embedding. We used the WMT English-German dataset [40]
that has 4.5M sentence pairs for NMT model training. As
described in Table 1, the image models are dense models,
which consist of only dense variables, while the NLP mod-
els are sparse models, which contain both dense and sparse
variables. The batch size per GPU is 64 for ResNet-50 and
Inception-v3, and it is 128 for LM and NMT.

6.2 Model Convergence
Parallax correctly converges models as other frameworks,
and the convergence speed is faster than or equal to TF-PS
and Horovod. Figure 7 shows the convergence graphs of
ResNet-50, LM, and NMT models. We compare the training
time taken for each framework to converge models, which
is indicated by a model-specific metric reaching the same
target values. The target values are 23.74% top-1 error for
ResNet-50 experiments (Figure 7(a)), perplexity of 47.5 for
LM experiments (Figure 7(b)), and BLEU score of 23.2 for
NMT experiments (Figure 7(c)). ResNet-50, LM, and NMT
experiments use 48, 36, and 24 GPUs, respectively.

The convergence speed in Figure 7 demonstrates the rela-
tionship between the training architecture and the sparsity
of models. For example, ResNet-50 results confirm our find-
ings that the AR architecture (Horovod) is efficient for the
training of dense models than the PS architecture (TF-PS).
Horovod’s training takes less time than TF-PS for the same
top-1 validation error. Parallax shows almost equal perfor-
mance with Horovod because Parallax utilizes only the AR
architecture for dense models by using Horovod AllReduce
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Figure 8. Training throughputs of (a) ResNet-50, (b) Inception-v3, (c) LM and (d) NMT on Parallax, TF-PS and Horovod,
varying the number of machines from 1 to 8. In dense models (ResNet-50 and Inception-v3), Parallax outperforms TF-PS and
shows the same performance with Horovod. In sparse models (LM and NMT), Parallax is faster than both TF-PS and Horovod.

operations. The slight difference in convergence times of
Parallax and Horovod is due to random variable initializa-
tion and data shuffling effects unrelated to the techniques
described in this paper.
On the other hand, TF-PS is faster than Horovod for the

LM model as we expected. For all LM model experiments,
Parallax automatically finds a near-optimal number of parti-
tions for sparse variables using its regression-based method.
In the case of TF-PS and Horovod, we perform a manual
search for the number of partitions as the frameworks do
not provide automatic search mechanisms. Thanks to Par-
allax’s hybrid architecture and optimizations such as local
aggregation, Parallax achieves a 2.6x speedup compared to
TF-PS and a 5.9x speedup compared to Horovod.

Similar to the LM experiments, the NMT model experi-
ments were conducted after applying partitioning of sparse
variables for each framework. Parallax converges 2.3x faster
than Horovod and 1.7x faster than TF-PS.

6.3 Performance and Scalability
Next, we show the performance of Parallax by comparing
the training throughput of Parallax against those of TF-PS
and Horovod. Then, we evaluate the scalability of Parallax
as we increase the number of GPUs.

TrainingThroughput Figure 8 shows the training through-
put of Parallax, TF-PS andHorovod. According to Figures 8(a)

and 8(b), Horovod achieves higher throughput compared
to TF-PS on the dense models. For these models, Parallax
achieves throughput similar to Horovod. In contrast to the
dense models, the three frameworks have significant perfor-
mance differences for the sparse models. Figures 8(c) and 8(d)
depict training throughput for LM and NMT. On 48 GPUs,
Parallax shows 2.8x speedup and 2.0x speedup for LM and
NMT compared to TF-PS, respectively. Throughout all combi-
nations of the number of machines and different DL models,
Parallax always outperforms or gives performance equal to
both TF-PS and Horovod.
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Models AR NaïvePS OptPS HYB (AR + OptPS)

LM 45.5k 98.9k 250k 274k
NMT 68.3k 102k 116k 204k

Table 4. Training throughput (words/sec) of various archi-
tectures.

Scalability of Parallax. Figure 9 presents the scalabil-
ity of Parallax for the four models. We define normalized
throughput for n GPUs (n = 6, 12, 24, 48) as the ratio of
the throughput for n GPUs over the throughput for 1 GPU.
Ideally, the normalized throughput should be equal to the
number of GPUs. The difference between ideal through-
put and actual throughput comes from the added commu-
nication overhead for distributed training. For ResNet-50
and Inception-v3, Parallax scales out well, achieving 39.8x
and 43.6x speedups on 48 GPUs. The scalability of LM and
NMT is worse than ResNet-50 and Inception-v3. The normal-
ized throughput of LM is 9.4, and that of NMT is 18.4 with
48 GPUs. LM and NMT stress more communication than
ResNet-50 and Inception-v3 due to the large size of variables
and relatively light computation. For example, the number of
variable elements exchanged per GPU is 101 million for NMT,
26 million for ResNet-50, and 24 million for Inception-v3.

6.4 Effect of Hybrid Architecture
To analyze the effectiveness of the hybrid architecture com-
pared to employing only one architecture, we compare the
throughputs of AR using Parallax, the naïve PS architecture
(NaïvePS) using TF-PS, optimized PS (OptPS) in Parallax, and
the hybrid architecture (HYB) based on AR and OptPs, as
shown in Table 4. OptPS includes local aggregation and smart
operation placement across server and worker processes. We
experiment for LM and NMT models using 8 machines with
48 GPUs. In the experiments, sparse variable partitioning is
applied to all architectures because of the large size of the
sparse variables.

As we show in the previous section, NaïvePS (TF-PS) out-
performs AR on sparse models - the speedup is 2.2x for
LM and 1.5x for NMT. OptPS improves the throughput of
NaïvePS by 2.5x and 1.1x for LM and NMT, respectively. The
speedup continues on HYB - it is 1.1x faster than OptPS for
the LM model and 1.8x faster for the NMT model. HYB’s
performance improvement is more significant in the NMT
model which has a similar ratio of sparse and dense vari-
ables (56% of total variables are dense and the remaining
44% are sparse). On the other hand, the speedup of the LM
model is relatively low as we progress from OptPS to HYB.
The reason is that the majority of variables in the LM model
are sparse variables (the size of sparse variables is 99% of
the size of total variables), and the effect of optimizing the
communication of dense variables by combining AR and PS
is rather small.

Models Parallax Min Optimal

LM 274k 96.5k 289.5k

NMT 204k 124.1k 208k
Table 5. Training throughputs (words/sec) from different
partitioning methods with 8 machines (48 GPUs). The Paral-
lax column corresponds to Parallax’s partitioning method,
the Min column shows the results of using the smallest num-
ber of partitions possible without memory exceptions, and
the Optimal shows the results of the brute-force method.

length αmodel Parallax TF-PS Speedup

120 1.0 437k 214k 2.04x
60 0.52 511k 219k 2.33x
30 0.28 536k 221k 2.43x
15 0.16 557k 193k 2.89x
8 0.1 480k 159k 3.02x
4 0.07 285k 94k 3.03x
1 0.04 82k 24k 3.42x

Table 6. The training throughput (words/sec) of Parallax
and TF-PS, and speedup of Parallax compared to TF-PS un-
der various sparsity degrees (αmodel ). length represents the
number of words in a data instance.

6.5 Sparse Variable Partitioning
We present the efficiency of the sparse variable partitioning
method of Parallax for LM and NMT in Table 5. The effi-
ciency is measured by comparing throughput of Parallax’s
method with that of a brute-force method that finds the opti-
mal number of partitions by first starting from the smallest
number of partitions possible without memory exceptions
(4 and 2 partitions for LM and NMT, respectively) and grad-
ually increasing the number of partitions by 2 to get better
throughput. The brute-force method stops searching when
the number of partitions is too large that throughput drops
more than 10% compared to the highest throughput observed.
Compared to the results using the smallest number of parti-
tions without exceeding the memory bound (Min), Parallax’s
partitioning method improves the throughput by 2.84x and
1.64x for LM and NMT, respectively. Moreover, Parallax’s
method does not fall behind more than 6% compared to the
brute-force method (Optimal). The brute-force method is
much more inefficient than Parallax; Parallax spends at most
20 minutes to get sampling results of at most 5 runs while
the brute-force method needs to collect results from more
than 50 runs.

6.6 Effect of Sparsity Degree
Table 6 compares the training throughput (words/sec) under
various sparsity degrees (αmodel ) using Parallax and TF-PS.
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All experiments were performed on 48 GPUs using a con-
structed LM model that uses dense variables and vocabulary
smaller than those of the original LM model to test under
a wide range of αmodel values. αmodel is controlled by the
number of words (length) in a data instance with the batch
size fixed. The longer the length of a data instance, more ele-
ments of sparse variables are utilized at an iteration, thus the
larger the value of αmodel . Parallax has higher throughput
than TF-PS for all the sparsity conditions. The fixed cost for
dense variable communication is becoming more significant
as the amount of data transfer for sparse variables reduces
due to the small αmodel . Therefore, the biggest speedup of
Parallax compared to TF-PS is 3.42 when αmodel is minimum.

7 Related Work
DataParallel Training onExistingDL Frameworks Ex-
isting DL frameworks, such as TensorFlow [1], MXNet [8]
and PyTorch [29], support data parallel training with multi-
ple machines and GPUs. However, to the best of our knowl-
edge, none of the existing frameworks consider the sparsity
as an important factor of data parallel training, only sup-
porting either the PS architecture or the AR architecture at
one time. Moreover, unlike Parallax, most of the existing
frameworks make users manually modify single-GPU code
to be trainable in a distributed environment.
For example, TensorFlow data parallelization APIs such

as SyncReplicasOptimizer, replica_device_setter,
MonitoredTrainingSession and Server are designed
only for the PS architecture. Moreover, these APIs require
additional modifications when converting a single-GPU
graph to a distributed one, and users are still responsible
for debugging if distributed training does not work
correctly and efficiently. To handle this issue, TensorFlow
introduces a high-level DistributionStrategy API as
an experimental feature, which removes the manual
modification process from users by converting a single-GPU
code to a distributed version automatically. However,
even with such a high-level API, users must select
which strategy to use among various strategies including
MirroredStrategy, CollectiveAllReduceStrategy and
ParameterServerStrategy, without any clue about the
relationship between the model sparsity and training
throughput. Additionally, the programming model with
DistributionStrategy is less flexible than the low-level
data parallelization API to achieve automated distribution.
The current implementation of DistributionStrategy5

does not support synchronous multi-machine training with
the PS architecture, input data sharding API for multi-
machine training, and advanced performance optimizations
that Parallax provides.

5TensorFlow v1.12, November 2018.

MXNet [8] supports data parallel training using a dis-
tributed key-value store for data synchronization between
machines and GPUs, supporting only the PS architecture
without considering the model sparsity. In addition, a single-
GPU code should be manually modified to pull variables and
to push gradients using the store. Moreover, it is impossible
to improve communication efficiency by offloading some
computations from a worker to servers with the key-value
store. PyTorch [29] supports distributed training only with
the AR architecture. PyTorch provides APIs for constructing
communication groups, averaging gradients, and adding ag-
gregation methods for data parallel training. Horovod [34]
also provides an abstraction of efficient AR algorithms and
implementations. Parallax also uses Horovod’s MPI opera-
tors for TensorFlow including HorovodAllreduceOp.

Combining PS Architecture with Other Communica-
tion Mechanisms There exist other frameworks that try
to improve performance by combining the PS architecture
with other communication mechanisms. MXNET-MPI [24]
divides GPUs into multiple groups, where GPUs in the same
group communicate using AllReduce/Reduce operations.
Each group then communicates with each other using the PS
architecture. For this new architecture, the paper introduces
a newMPI Elastic SGD algorithm, which allows synchronous
SGD methods within an MPI group and asynchronous SGD
methods between groups to mitigate both the network con-
tention problem in synchronous training and the staleness
problem in asynchronous training. The mixture of the PS ar-
chitecture and AllReduce/Reduce operations is mainly used
for controlling asynchrony for the new algorithm. On the
other hand, Parallax combines the PS and AR architectures
while maintaining the widely-used algorithm, synchronous
SGD. Moreover, since MXNET-MPI still uses collective com-
munication within a group, it requires a larger amount of
network transfer for handling sparse variables compared to
Parallax.

Poseidon [44] combines the PS architecture and sufficient
factor broadcasting (SFB) communication that uses peer-to-
peer connections of workers. SFB communicates sufficient
factors of a gradient matrix for fully connected (FC) layers us-
ing its decomposability as two smaller vectors. Even though
Poseidon pursues a similar approach to choose an optimal
training architecture based on the estimation of data trans-
fer, it focuses on gradients of the FC layers, while Parallax
focuses on sparse variables and their gradients.

Model Parallel Training Model parallelism is another ap-
proach to deal with the large, sparse models. In model paral-
lelism, a single model is split across multiple GPUs, and each
GPU computes only a part of the model. A problem of model
parallel training is underutilization of GPUs due to the small
size of each fragment assigned to a GPU. PipeDream [15]
addresses the problem using overlapped computation for
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multiple iterations. However, the staleness caused by com-
puting multiple iterations in parallel is getting significant
if the number of GPUs increases. Recently, hybrid strate-
gies of model-parallelism and data parallelism [41, 42] are
introduced to find optimal parallelization methods by consid-
ering both sides, but they still need an efficient data parallel
training to improve overall performance.

Increasing Variable Sparsity through Network Sparsi-
fication A dense model can be converted into a sparse
model by employing pruning techniques [22, 23] that are
used to reduce the amount of computation, communication,
and memory usage for both training and inference. These
techniques utilize different subsets of model variables for
different inputs, making the variables sparse. Quantization
techniques [3, 14, 46] change gradient tensors of dense vari-
ables into sparse formats by increasing the number of zero
elements in the gradients. Even when the model is intrinsi-
cally dense, by applying network pruning or quantization,
we believe that Parallax’s hybrid architecture can outperform
other frameworks that only utilize the PS or AR architecture.
We consider exploring this direction as future work.

8 Conclusion
We present Parallax, a framework that provides sparsity-
aware data parallel training. Parallax introduces a hybrid
approach that combines different training architectures ac-
cording to the sparsity of variables to reduce the amount
of network transfer. Parallax also proposes a method for
partitioning sparse variables to maximize parallelism while
maintaining low computation and communication overhead.
Its automatic graph transformation allows users to use their
single-GPU program for training on a distributed environ-
ment while maintaining scalable performance. We show
that Parallax achieves higher performance and scalability
for sparse models compared to TensorFlow and Horovod
in a cluster of 48 GPUs. We open sourced Parallax in the
hope of facilitating users to take advantage of sparsity-
aware data parallel training. Parallax is publicly available at
https://github.com/snuspl/parallax.
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