
PRETZEL: Opening the Black Box of Machine Learning
Prediction Serving Systems

Yunseong Lee
Seoul National University

Alberto Scolari
Politecnico di Milano

Byung-Gon Chun
Seoul National University

Marco Domenico Santambrogio
Politecnico di Milano

Markus Weimer
Microsoft

Matteo Interlandi
Microsoft

Abstract
Machine Learning models are often composed of
pipelines of transformations. While this design allows to
efficiently execute single model components at training-
time, prediction serving has different requirements such
as low latency, high throughput and graceful performance
degradation under heavy load. Current prediction serv-
ing systems consider models as black boxes, whereby
prediction-time-specific optimizations are ignored in fa-
vor of ease of deployment. In this paper, we present
PRETZEL, a prediction serving system introducing a
novel white box architecture enabling both end-to-end
and multi-model optimizations. Using production-like
model pipelines, our experiments show that PRETZEL is
able to introduce performance improvements over differ-
ent dimensions; compared to state-of-the-art approaches
PRETZEL is on average able to reduce 99th percentile la-
tency by 5.5× while reducing memory footprint by 25×,
and increasing throughput by 4.7×.

1 Introduction
Many Machine Learning (ML) frameworks such as
Google TensorFlow [4], Facebook Caffe2 [6], Scikit-
learn [48], or Microsoft ML.Net [14] allow data scien-
tists to declaratively author pipelines of transformations
to train models from large-scale input datasets. Model
pipelines are internally represented as Directed Acyclic
Graphs (DAGs) of operators comprising data transforma-
tions and featurizers (e.g., string tokenization, hashing,
etc.), and ML models (e.g., decision trees, linear models,
SVMs, etc.). Figure 1 shows an example pipeline for text
analysis whereby input sentences are classified according
to the expressed sentiment.

ML is usually conceptualized as a two-steps process:
first, during training model parameters are estimated
from large datasets by running computationally inten-

“This is a nice product”

Positive vs. Negative

Tokenizer
Char

Ngram

Word

Ngram

Concat

Logistic
Regression

Figure 1: A Sentiment Analysis (SA) pipeline consisting
of operators for featurization (ellipses), followed by a ML
model (diamond). Tokenizer extracts tokens (e.g., words)
from the input string. Char and Word Ngrams featurize
input tokens by extracting n-grams. Concat generates a
unique feature vector which is then scored by a Logistic
Regression predictor. This is a simplification: the actual
DAG contains about 12 operators.

sive iterative algorithms; successively, trained pipelines
are used for inference to generate predictions through
the estimated model parameters. When trained pipelines
are served for inference, the full set of operators is de-
ployed altogether. However, pipelines have different sys-
tem characteristics based on the phase in which they are
employed: for instance, at training time ML models run
complex algorithms to scale over large datasets (e.g., lin-
ear models can use gradient descent in one of its many
flavors [52, 50, 54]), while, once trained, they behave as
other regular featurizers and data transformations; further-
more, during inference pipelines are often surfaced for
direct users’ servicing and therefore require low latency,
high throughput, and graceful degradation of performance
in case of load spikes.

Existing prediction serving systems, such as Clip-
per [9, 32], TensorFlow Serving [5, 46], Rafiki [59],
ML.Net [14] itself, and others [17, 18, 43, 15] focus
mainly on ease of deployment, where pipelines are con-

1

sidered as black boxes and deployed into containers (e.g.,
Docker [11] in Clipper and Rafiki, servables in Ten-
sorFlow Serving). Under this strategy, only “pipeline-
agnostic” optimizations such as caching, batching and
buffering are available. Nevertheless, we found that black
box approaches fell short on several aspects. For in-
stance, prediction services are profitable for ML-as-a-
service providers only when pipelines are accessed in
batch or frequently enough, and may be not when models
are accessed sporadically (e.g., twice a day, a pattern we
observed in practice) or not uniformly. Also, increasing
model density in machines, thus increasing utilization, is
not always possible for two reasons: first, higher model
density increases the pressure on the memory system,
which is sometimes dangerous—we observed (Section 5)
machines swapping or blocking when too many models
are loaded; as a second reason, co-location of models
may increase tail latency especially when seldom used
models are swapped to disk and later re-loaded to serve
only a few users’ requests. Interestingly enough, model
pipelines often share similar structures and parameters
inasmuch as A/B testing and customer personalization are
often used in practice in large scale “intelligent” services;
operators could therefore be shared between “similar”
pipelines. Sharing among pipelines is further justified
by how pipelines are authored in practice: ML pipelines
are often produced by fine tuning pre-existing or default
pipelines and by editing parameters or adding/removing
steps like featurization, etc.

These and other limitations of existing black box sys-
tems (further described in Section 2) inspired us for de-
veloping PRETZEL: a system for serving predictions over
trained pipelines originally authored in ML.Net and that
borrows ideas from the Database and System commu-
nities. Starting from the above observation that trained
pipelines often share operators and parameters (such as
weights and dictionaries used within operators, and es-
pecially during featurization [64]), we propose a white
box approach for model serving whereby end-to-end and
multi-pipeline optimization techniques are applied to re-
duce resource utilization while improving performance.
Specifically, in PRETZEL deployment and serving of
model pipelines follow a two-phase process. During
an off-line phase, statistics from training and state-of-
the-art techniques from in-memory data-intensive sys-
tems [33, 66, 26, 40, 45] are used in concert to optimize
and compile operators into model plans. Model plans
are white box representations of input pipelines such that
PRETZEL is able to store and re-use parameters and com-
putation among similar plans. In the on-line phase, mem-
ory (data vectors) and CPU (thread-based execution units)

resources are pooled among plans. When an inference
request for a plan is received, an event-based schedul-
ing [60] is used to bind computation to execution units.

Using 500 different production-like pipelines used in-
ternally at Microsoft, we show the impact of the above
design choices with respect to ML.Net and end-to-end
solutions such as Clipper. Specifically, PRETZEL is on
average able to improve memory footprint by 25×, re-
duce the 99th percentile latency by 5.5×, and increase the
throughput by 4.7×.

In summary, our contributions are:

• A thorough analysis of the problems and limitations
burdening black box model serving approaches;

• A set of design principles for white box model serv-
ing allowing pipelines to be optimized for inference
and to share resources;

• A system implementation of the above principles;

• An experimental evaluation showing order-of-
magnitude improvements over several dimensions
compared to previous black box approaches.

The remainder of the paper is organized as follows:
Section 2 identifies a set of limitations affecting current
black box model serving approaches; the outcome of the
enumerated limitations is a set of design principles for
white box model serving, described in Section 3. Sec-
tion 4 introduces the PRETZEL system as an implementa-
tion of the above principles. Section 5 contains a set of
experiments validating the PRETZEL performance, while
Section 6 lists the limitations of current PRETZEL imple-
mentation and future work. The paper ends with related
work and conclusions, respectively in Sections 7 and 8.

2 Model Serving: State-of-the-Art and
Limitations

Nowadays, “intelligent” services such as Microsoft Cor-
tana speech recognition, Netflix movie recommender or
Gmail spam detector depend on ML scoring capabilities,
which are currently experiencing a growing demand [31].
This in turn fosters the research in prediction serving sys-
tems in cloud settings [5, 46, 9, 32], where trained models
from data science experts are operationalized.

Data scientists prefer to use high-level declarative tools
such as ML.Net, Keras [13] or Scikit-learn for better
productivity and easy operationalization. These tools pro-
vide dozens of pre-defined operators and ML algorithms,
which data scientists compose into sequences of operators
(called pipelines) using high-level APIs (e.g., in Python).

2

ML.Net, the ML toolkit used in this paper, is a C# li-
brary that runs on a managed runtime with garbage col-
lection and Just-In-Time (JIT) compilation. Unmanaged
C/C++ code can also be employed to speed up processing
when possible. Internally, ML.Net operators consume
data vectors as input and produce one (or more) vectors
as output. 1 Vectors are immutable whereby multiple
downstream operators can safely consume the same input
without triggering any re-execution. Upon pipeline initial-
ization, operators composing the model DAG are analyzed
and arranged to form a chain of function calls which, at
execution time, are JIT-compiled to form a unique func-
tion executing the whole DAG on a single call. Although
ML.Net supports Neural Network models, in this work
we only focus on pipelines composed by featurizers and
classical ML models (e.g., trees, logistic regression, etc.).

Pipelines are first trained using large datasets to esti-
mate models’ parameters. ML.Net models are exported
as compressed files containing several directories, one per
pipeline operator, where each directory stores operator
parameters in either binary or plain text files. ML.Net,
as other systems, aims to minimize the overhead of de-
ploying trained pipelines in production by serving them
into black box containers, where the same code is used
for both training and inference. Figure 2 depicts a set
of black box models where the invocation of the func-
tion chain (e.g., predict()) on a pipeline returns the
result of the prediction: throughout this execution chain,
inputs are pulled through each operator to produce inter-
mediate results that are input to the following operators,
similarly to the well-known Volcano-style iterator model
of databases [36]. To optimize the performance, ML.Net
(and systems such as Clipper among others) applies tech-
niques such as handling multiple requests in batches and
caching the results of the inference if some predictions
are frequently issued for the same pipeline. However,
these techniques assume no knowledge and no control
over the pipeline, and are unaware of its internal structure.
Despite being regarded as a good practice [65], the black
box, container-based design hides the structure of each
served model and prevents the system from controlling
and optimizing the pipeline execution. Therefore, under
this approach, there is no principled way neither for shar-
ing optimizations between pipelines, nor to improve the
end-to-end execution of individual pipelines. More con-
cretely, we observed the following limitations in current
state-of-the-art prediction serving systems.

Memory Waste: Containerization of pipelines disallows

1Note that this is a simplification. ML.Net in fact support several
data types. We refer readers to [23] for more details.

…

DAG1

DAG2

<DAG1, “foo”>

<DAG1, “bar”>

<DAG2, “baz”>

Thread

predict()

predict()

Figure 2: A representation of how existing systems handle
prediction requests. Each pipeline is surfaced externally
as a black box function. When a prediction request is
issued (predict()), a thread is dispatched to execute
the chain as a single function call.

any sharing of resources and runtimes 2 between pipelines,
therefore only a few (tens of) models can be deployed per
machine. Conversely, ML frameworks such as ML.Net
have a known set of operators to start with, and featuriz-
ers or models trained over similar datasets have a high
likelihood of sharing parameters. For example, transfer
learning, A/B testing, and personalized models are com-
mon in practice; additionally, tools like ML.Net suggest
default training configurations to users given a task and
a dataset, which leads to many pipelines with similar
structure and common objects and parameters. To better
illustrate this scenario, we pick a Sentiment Analysis (SA)
task with 250 different versions of the pipeline of Figure 1
trained by data scientists at Microsoft.

0 50 100 150 200 250

Model idx (Sentiment Analysis)

Tokenize
Concat

w1
w2
w3
w4
w5
w6
w7
c1
c2
c3
c4
c5
c6

250
250

85 478 KB

8 374 B
18 374 B

7 374 B

86 482 KB

46 530 KB

46 83 MB

7 59 MB

9 59 MB
9 59 MB

85 59 MB
86 59 MB

8 59 MB

W
o
rd

N
g
ra

m
C

h
a
rN

g
ra

m

369 B
328 B

Figure 3: How many identical operators can be shared
in multiple SA pipelines. CharNgram and WordNgram
operators have variations that are trained on different
hyper-parameters. On the right we report operators sizes.

Figure 3 shows how many different (parameterized)
operators are used, and how often they are used within the
250 pipelines. While some operators like linear regression
(whose weights fit in ~15MB) are unique to each pipeline,

2One instance of model pipeline in production easily occupies 100s
of MB of main memory.

3

and thus not shown in Figure 3, many other operators
can be shared among pipelines, therefore allowing more
aggressive packing of models: Tokenize and Concat are
used with the same parameters in all pipelines; Ngram
operators have only a handful of versions, where most
pipelines use the same version of the operators. This
suggests that the resource utilization of current black box
approaches can be largely improved.

100 101 102

Latency (ms, log-scaled)

0

20

40

60

80

100

C
D

F
 (

%
)

0.61 8.10.63 280.0

(w
o
rs

t)

(w
o
rs

t)

(p
9
9
)

(p
9
9
)

cold

hot

Figure 4: CDF of latency of prediction requests of 250
DAGs. We denote the first prediction as cold; the hot
line is reported as average over 100 predictions after a
warm-up period of 10 predictions. We present the 99th
percentile and worst case latency values.

Prediction Initialization: ML.Net employs a pull-based
execution model that lazily materializes input feature vec-
tors, and tries to reuse existing vectors between interme-
diate transformations. This largely decreases the memory
footprint and the pressure on garbage collection at training
time. Conversely, this design forces memory allocation
along the data path, thus making latency of predictions
sub-optimal and hard to predict. Furthermore, at pre-
diction time ML.Net deploys pipelines as in the training
phase, which requires initialization of function chain call,
reflection for type inference and JIT compilation. While
this composability conveniently hides complexities and
allows changing implementations during training, it is of
little use during inference, when a model has a defined
structure and its operators are fixed. In general, the above
problems result in difficulties in providing strong tail la-
tency guarantees by ML-as-a-service providers. Figure 4
describes this situation, where the performance of hot
predictions over the 250 sentiment analysis pipelines with
memory already allocated and JIT-compiled code is more
than two orders of magnitude faster than the worst cold
case version for the same pipelines.

To drill down more into the problem, we found that
57.4% of the total execution time for a single cold pre-
diction is spent in pipeline analysis and initialization of
the function chain, 36.5% in JIT compilation and the
remaining is actual computation time.

Infrequent Accesses: In order to meet milliseconds-level
latencies [61], model pipelines have to reside in main
memory (possibly already warmed-up), since they can

have MBs to GBs (compressed) size on disk, with loading
and initialization times easily exceeding several seconds.
A common practice in production settings is to unload
a pipeline if not accessed after a certain period of time
(e.g., a few hours). Once evicted, successive accesses will
incur a model loading penalty and warming-up, therefore
violating Service Level Agreement (SLA).

0% 20% 40% 60% 80% 100%
Latency breakdown

23.1 34.2 32.7

0.3

9.6

CharNgram WordNgram Concat LogReg Others

Figure 5: Latency breakdown of a sentiment analysis
pipeline: each frame represents the relative wall clock
time spent on an operator.

Operator-at-a-time Model: As previously described,
predictions over ML.Net pipelines are computed by
pulling records through a sequence of operators, each
of them operating over the input vector(s) and producing
one or more new vectors. While (as is common practice
for in-memory data-intensive systems [45, 58, 24]) some
interpretation overheads are eliminated via JIT compila-
tion, operators in ML.Net (and in other tools) are “logical”
entities (e.g., linear regression, tokenizer, one-hot encoder,
etc.) with diverse performance characteristics. Figure 5
shows the latency breakdown of one execution of the SA
pipeline of Figure 1, where the only ML operator (linear
regression) takes two orders-of-magnitude less time with
respect to the slowest operator (WordNgram). It is com-
mon practice for in-memory data-intensive systems to
pipeline operators in order to minimize memory accesses
for memory-intensive workloads, and to vectorize com-
pute intensive operators in order to minimize the number
of instructions per data item [33, 66]. ML.Net operator-at-
a-time model [66] (as other libraries missing an optimiza-
tion layer, such as Scikit-learn) is therefore sub-optimal
in that computation is organized around logical operators,
ignoring how those operators behave together: in the ex-
ample of the sentiment analysis pipeline at hand, linear
regression is commutative and associative (e.g., dot prod-
uct between vectors) and can be pipelined with Char and
WordNgram, eliminating the need for the Concat opera-
tion and the related buffers for intermediate results. As we
will see in the following sections, PRETZEL’s optimizer
is able to detect this situation and generate an execution
plan that is several times faster than the ML.Net version
of the pipeline.

Coarse Grained Scheduling: Scheduling CPU re-
sources carefully is essential to serve highly concurrent
requests and run machines to maximum utilization. Under

4

the black box approach: (1) a thread pool is used to serve
multiple concurrent requests to the same model pipeline;
(2) for each request, one thread handles the execution of
a full pipeline sequentially 3, where one operator is active
at each point in time; (3) shared operators/parameters are
instantiated and evaluated multiple times (one per con-
tainer) independently; (4) thread allocation is managed
by the OS; and (5) load balancing is achieved “externally”
by replicating containers when performance degradation
is observed. We found this design sub-optimal, especially
in heavily skewed scenarios where a small amount of
popular models are scored more frequently then others:
indeed, in this setting the popular models will be repli-
cated (linearly increasing the resources used) whereas
containers of less popular pipelines will run underutilized,
therefore decreasing the total resource utilization. The
above problem is currently out-of-scope for black box,
container-based prediction serving systems because they
lack visibility into pipelines execution, and they do not
allow models to properly share computational resources.

After highlighting the major inefficiencies of current
black box prediction serving systems, we discuss a set of
design principles for white box prediction serving.

3 White Box Prediction Serving:
Design Principles

Based on the observations of Section 2, we argue that
all previously mentioned limitations can be overcome by
embracing a white box approach allowing to optimize the
execution of predictions both horizontally end-to-end and
vertically among multiple model pipelines.

White Box Prediction Serving: Model containerization
disallows any sharing of optimizations, resources, and
costs between pipelines. By choosing a white box archi-
tecture, pipelines can co-exist on the same runtime; un-
popular pipelines can be maintained up and warm, while
popular pipelines pay the bills. Thorough scheduling of
pipelines’ components can be managed within the run-
time so that optimal allocation decisions can be made
for running machines to high utilization. Nevertheless,
if a pipeline requires exclusive access to computational
or memory resources, a proper reservation-based alloca-
tion strategy can be enforced by the scheduler so that
container-based execution can be emulated.

End-to-end Optimizations: The operationalization of
models for prediction should focus on computation units
making optimal decisions on how data are processed

3Certain pipelines allow multi-threaded execution, but here we eval-
uate only single-threaded ones to estimate the per-thread efficiency.

and results are computed, to keep low latency and grace-
fully degrade with load increase. Such computation units
should: (1) avoid memory allocation on the data path; (2)
avoid creating separate routines per operator when possi-
ble, which are sensitive to branch mis-prediction and poor
data locality [45]; and (3) avoid reflection and JIT com-
pilation at prediction time. Optimal computation units
can be compiled Ahead-Of-Time (AOT) since pipeline
and operator characteristics are known upfront, and often
statistics from training are available. The only decision
to make at runtime is where to allocate computation units
based on available resources and constraints.

Multi-model Optimizations: To take full advantage of
the fact that pipelines often use similar operators and
parameters (Figure 3), shareable components have to be
uniquely stored in memory and reused as much as possible
to achieve optimal memory usage. Similarly, execution
units should be shared at runtime and resources properly
pooled and managed, so that multiple prediction requests
can be evaluated concurrently. Partial results, for example
outputs of featurization steps, can be saved and re-used
among multiple similar pipelines.

4 The Pretzel System
Following the above guidelines, we implemented PRET-
ZEL, a novel white box system for cloud-based infer-
ence of model pipelines. PRETZEL views models as
database queries and employs database techniques to
optimize DAGs and improve end-to-end performance
(Section 4.1.2). The problem of optimizing co-located
pipelines is casted as a multi-query optimization and tech-
niques such as view materialization (Section 4.3) are em-
ployed to speed up pipeline execution. Memory and CPU
resources are shared in the form of vector and thread
pools, such that overheads for instantiating memory and
threads are paid upfront at initialization time.

PRETZEL is organized in several components. A data-
flow-style language integrated API called Flour (Sec-
tion 4.1.1) with related compiler and optimizer called
Oven (Section 4.1.2) are used in concert to convert
ML.Net pipelines into model plans. An Object Store
(Section 4.1.3) saves and shares parameters among plans.
A Runtime (Section 4.2.1) manages compiled plans and
their execution, while a Scheduler (Section 4.2.2) man-
ages the dynamic decisions on how to schedule plans
based on machine workload. Finally, a FrontEnd is used
to submit prediction requests to the system.

In PRETZEL, deployment and serving of model
pipelines follow a two-phase process. During the off-
line phase (Section 4.1), ML.Net’s pre-trained pipelines

5

are translated into Flour transformations. Oven optimizer
re-arranges and fuses transformations into model plans
composed of parameterized logical units called stages.
Each logical stage is then AOT-compiled into physical
computation units where memory resources and threads
are pooled at runtime. Model plans are registered for
prediction serving in the Runtime where physical stages
and parameters are shared between pipelines with similar
model plans. In the on-line phase (Section 4.2), when
an inference request for a registered model plan is re-
ceived, physical stages are parameterized dynamically
with the proper values maintained in the Object Store.
The Scheduler is in charge of binding physical stages to
shared execution units.

Figures 6 and 7 pictorially summarize the above de-
scriptions; note that only the on-line phase is executed
at inference time, whereas the model plans are generated
completely off-line. Next, we will describe each layer
composing the PRETZEL prediction system.

4.1 Off-line Phase
4.1.1 Flour

The goal of Flour is to provide an intermediate represen-
tation between ML frameworks (currently only ML.Net)
and PRETZEL, that is both easy to target and amenable
to optimizations. Once a pipeline is ported into Flour,
it can be optimized and compiled (Section 4.1.2) into a
model plan before getting fed into PRETZEL Runtime for
on-line scoring. Flour is a language-integrated API simi-
lar to KeystoneML [55], RDDs [63] or LINQ [42] where
sequences of transformations are chained into DAGs and
lazily compiled for execution.

Listing 1 shows how the sentiment analysis pipeline
of Figure 1 can be expressed in Flour. Flour programs
are composed by transformations where a one-to-many
mapping exists between ML.Net operators and Flour
transformations (i.e., one operator in ML.Net can be
mapped to many transformations in Flour). Each Flour
program starts from a FlourContext object wrapping
the Object Store. Subsequent method calls define a DAG
of transformations, which will end with a call to Plan to
instantiate the model plan before feeding it into PRETZEL
Runtime. For example, in lines 2 and 3 of Listing 1 the
CSV.FromText call is used to specify that the target
DAG accepts as input text in CSV format where fields
are comma separated. Line 4 specifies the schema for the
input data, where TextReview is a class whose param-
eters specify the schema fields names, types, and order.
The successive call to Select in line 5 is used to pick
the Text column among all the fields, while the call to

Tokenize in line 6 is used to split the input fields into
tokens. Lines 8 and 9 contain the two branches defin-
ing the char-level and word-level n-gram transformations,
which are then merged with the Concat transform in
lines 10/11 before the linear binary classifier of line 12.
Both char and word n-gram transformations are param-
eterized by the number of n-grams and maps translating
n-grams into numerical format (not shown in the Listing).
Additionally, each Flour transformation accepts as input
an optional set of statistics gathered from training. These
statistics are used by the compiler to generate physical
plans more efficiently tailored to the model characteristics.
Example statistics are max vector size (to define the mini-
mum size of vectors to fetch from the pool at prediction
time, as in Section 4.2), dense/sparse representations, etc.

We have instrumented the ML.Net library to collect
statistics from training and with the related bindings to
the Object Store and Flour to automatically extract Flour
programs from pipelines once trained.

Listing 1: Flour program for the SA pipeline. Parameters
are extracted from the original ML.Net pipeline.
1 var fContext = new FlourContext(objectStore, ...)
2 var tTokenizer = fContext.CSV
3 .FromText(’,’)
4 .WithSchema<TextReview>()
5 .Select("Text")
6 .Tokenize();
7

8 var tCNgram = tTokenizer.CharNgram(numCNgrms, ...);
9 var tWNgram = tTokenizer.WordNgram(numWNgrms, ...);

10 var fPrgrm = tCNgram
11 .Concat(tWNgram)
12 .ClassifierBinaryLinear(cParams);
13

14 return fPrgrm.Plan();

4.1.2 Oven

With Oven, our goal is to bring query compilation and
optimization techniques into ML.Net.
Optimizer: When Plan is called on a Flour transforma-
tion’s reference (e.g., fPrgrm in line 14 of Listing 1), all
transformations leading to it are wrapped and analyzed.
Oven follows the typical rule-based database optimizer
design where operator graphs (query plans) are trans-
formed by a set of rules until a fix-point is reached (i.e.,
the graph does not change after the application of any
rule). The goal of Oven Optimizer is to transform an
input graph of Flour transformations into a stage graph,
where each stage contains one or more transformations.
To group transformations into stages we used the Tuple-
ware’s hybrid approach [33]: memory-intensive transfor-
mations (such as most featurizers) are pipelined together
in a single pass over the data. This strategy achieves
best data locality because records are likely to reside in

6

Logical Stages

(1) Flour
Transforms

S1 S2 S3

Params Stats

Physical Stages
S1 S2 S3

(3) Compilation

(2) Optimization

Model

Stats

Params
Logical
Stages

Physical
Stages

Model Plan

var fContext = ...;

var Tokenizer = ...;

return fPrgm.Plan();

1: [x]

2: [y,z]

3: …

int[100]

float[200]

…

Figure 6: Model optimization and compilation in PRET-
ZEL. In (1), a model is translated into a Flour program. (2)
Oven Optimizer generates a DAG of logical stages from
the program. Additionally, parameters and statistics are
extracted. (3) A DAG of physical stages is generated by
the Oven Compiler using logical stages, parameters, and
statistics. A model plan is the union of all the elements.

CPU L1 caches [40, 45]. Compute-intensive transforma-
tions (e.g., vector or matrix multiplications) are executed
one-at-a-time so that Single Instruction, Multiple Data
(SIMD) vectorization can be exploited, therefore opti-
mizing the number of instructions per record [66, 26].
Transformation classes are annotated (e.g., 1-to-1, 1-to-n,
memory-bound, compute-bound, commutative and asso-
ciative) to ease the optimization process: no dynamic
compilation [33] is necessary since the set of operators
is fixed and manual annotation is sufficient to generate
properly optimized plans 4.

Stages are generated by traversing the Flour transforma-
tions graph repeatedly and applying rules when matching
conditions are satisfied. Oven Optimizer consists of an
extensible number of rewriting steps, each of which in
turn is composed of a set of rules performing some modifi-
cation on the input graph. Each rewriting step is executed
sequentially: within each step, the optimizer iterates over
its full set of rules until an iteration exists such that the
graph is not modified after all rules are evaluated. When
a rule is active, the graph is traversed (either top-down, or
bottom up, based on rule internal behavior; Oven provides
graph traversal utilities for both cases) and the rewriting
logic is applied if the matching condition is satisfied over
the current node. In its current implementation, the Oven
Optimizer is composed of 4 rewriting steps:

InputGraphValidatorStep: This step comprises three
rules, performing schema propagation, schema validation

4Note that ML.Net does provide a second order operator accepting
arbitrary code requiring dynamic compilation. However, this is not
supported in our current version of PRETZEL.

and graph validation. Specifically, the rules propagate
schema information from the input to the final transfor-
mation in the graph, and validate that (1) each transfor-
mation’s input schema matches with the transformation
semantics (e.g., a WordNgram has a string type as input
schema, or a linear learner has a vector of floats as input),
and (2) the transformation graph is well-formed (e.g., a
final predictor exists).

StageGraphBuilderStep: It contains two rules that rewrite
the graph of (now schematized) Flour transformations
into a stage graph. Starting with a valid transformation
graph, the rules in this step traverse the graph until a
pipeline-breaking transformation is found, i.e., a Concat
or an n-to-1 transformation such as an aggregate used for
normalization (e.g., L2). These transformations, in fact,
require data to be fully scanned or materialized in mem-
ory before the next transformation can be executed. For
example, operations following a Concat require the full
feature vector to be available, or a Normalizer requires
the L2 norm of the complete vector. The output of the
StageGraphBuilderStep is therefore a stage graph,
where each stage internally contains one or more trans-
formations. Dependencies between stages are created
as aggregation of the dependencies between the internal
transformations. By leveraging the stage graph, PRETZEL
is able to considerably decrease the number of vectors
(and as a consequence the memory usage) with respect to
the operator-at-a-time strategy of ML.Net.

StageGraphOptimizerStep: This step involves 9 rules that
rewrite the graph in order to produce an optimal (logical)
plan. The most important rules in this step rewrite the
stage graph by (1) removing unnecessary branches (simi-
lar to common sub-expression elimination); (2) merging
stages containing equal transformations (often generated
by traversing graphs with branches); (3) inlining stages
that contain only one transform; (4) pushing linear models
through Concat operations; and (5) removal of unneces-
sary stages (e.g., when linear models are pushed through
Concat operations, the latter stage can be removed if not
containing any other additional transformation).

OutputGraphValidatorStep: This last step is composed
of 6 rules. These rules are used to generate each stage’s
schema out of the schemas of the single internal transfor-
mations. Stage schema information will be used at run-
time to request properly typed vectors. Additionally, some
training statistics are applied at this step: transformations
are labeled as sparse or dense, and dense compute-bound
operations are labeled as vectorizable. A final validation
check is run to ensure that the stage graph is well-formed.

In the example sentiment analysis pipeline of Figure

7

1, Oven is able to recognize that the Linear Regression
can be pushed into CharNgram and WordNgram, there-
fore bypassing the execution of Concat. Additionally,
Tokenizer can be reused between CharNgram and Word-
Ngram, therefore it will be pipelined with CharNgram (in
one stage) and a dependency between CharNgram and
WordNgram (in another stage) will be created. The final
plan will therefore be composed of 2 stages, versus the
initial 4 operators (and vectors) of ML.Net.

Model Plan Compiler: Model plans have two DAGs: a
DAG of logical stages, and a DAG of physical stages.
Logical stages are an abstraction of the results of the
Oven Optimizer; physical stages contain the actual code
that will be executed by the PRETZEL runtime. For each
given DAG, there is a 1-to-n mapping between logical to
physical stages so that a logical stage can represent the
execution code of different physical implementations. A
physical implementation is selected based on the parame-
ters characterizing a logical stage and available statistics.

Plan compilation is a two step process. After the stage
DAG is generated by the Oven Optimizer, the Model
Plan Compiler (MPC) maps each stage into its logical
representation containing all the parameters for the trans-
formations composing the original stage generated by the
optimizer. Parameters are saved for reuse in the Object
Store (Section 4.1.3). Once the logical plan is generated,
MPC traverses the DAG in topological order and maps
each logical stage into a physical implementation. Phys-
ical implementations are AOT-compiled, parameterized,
lock-free computation units. Each physical stage can be
seen as a parametric function which will be dynamically
fed at runtime with the proper data vectors and pipeline-
specific parameters. This design allows PRETZEL runtime
to share the same physical implementation between mul-
tiple pipelines and no memory allocation occurs on the
prediction path (more details in Section 4.2.1). Logical
plans maintain the mapping between the pipeline-specific
parameters saved in the Object Store and the physical
stages executing on the Runtime as well as statistics such
as maximum vector size (which will be used at runtime
to request the proper amount of memory from the pool).
Figure 6 summarizes the process of generating model
plans out of ML.Net pipelines.

4.1.3 Object Store

The motivation behind Object Store is based on the in-
sights of Figure 3: since many DAGs have similar struc-
tures, sharing operators’ state (parameters) can consid-
erably improve memory footprint, and consequently the
number of predictions served per machine. An example

Inlined DAGs

Scheduler

Stages

(1)

(2)

(4)

(3)

Runtime

Executor

FrontEnd

(5)

Executor
Executor

Figure 7: (1) When a prediction request is issued, (2) the
Runtime determines whether to serve the prediction using
(3) the request/response engine or (4) the batch engine.
In the latter case, the Scheduler takes care of properly
allocating stages over the Executors running concurrently
on CPU cores. (5) The FrontEnd returns the result to the
Client once all stages are complete.

is language dictionaries used for input text featurization,
which are often in common among many models and are
relatively large. The Object Store is populated off-line
by MPC: when a Flour program is submitted for plan-
ning, new parameters are kept in the Object Store, while
parameters that already exist are ignored and the stage
information is rewritten to reuse the previously loaded
one. Parameters equality is computed by looking at the
checksum of the serialized version of the objects.

4.2 On-line Phase
4.2.1 Runtime

Initialization: Model plans generated by MPC are reg-
istered in the PRETZEL Runtime. Upon registration, a
unique pipeline ID is generated, and physical stages com-
posing a plan are loaded into a system catalog. If two
plans use the same physical stage, this is loaded only once
in the catalog so that similar plans may share the same
physical stages during execution. When the Runtime
starts, a set of vectors and long-running thread pools
(called Executors) are initialized. Vector pools are al-
located per Executor to improve locality [35]; Executors
are instead managed by the Scheduler to execute physical
stages (Section 4.2.2) or used to manage incoming pre-
diction requests by the FrontEnd. Allocations of vector
and thread pools are managed by configuration parame-
ters, and allow PRETZEL to decrease the time spent in
allocating memory and threads during prediction time.
Execution: Inference requests for the pipelines registered
into the system can be submitted through the FrontEnd
by specifying the pipeline ID, and a set of input records.
Figure 7 depicts the process of on-line inference. PRET-

8

ZEL comes with a request-response engine and a batch
engine. The request-response engine is used by single pre-
dictions for which latency is the major concern whereby
context-switching and scheduling overheads can be costly.
Conversely, the batch engine is used when a request con-
tains a batch of records, or when the prediction time is
such that scheduling overheads can be considered as neg-
ligible (e.g., few hundreds of microseconds). The request-
response engine inlines the execution of the prediction
within the thread handling the request: the pipeline physi-
cal plan is JIT-compiled into a unique function call and
scored. Instead, by using the batch engine requests are
forwarded to the Scheduler that decides where to allocate
physical stages based on the current runtime and resource
status. Currently, whether to use the request-response
or batch engine is set through a configuration parameter
passed when registering a plan. In the future we plan to
adaptively switch between the two.

4.2.2 Scheduler

In PRETZEL, model plans share resources, thus schedul-
ing plans appropriately is essential to ensure scalability
and optimal machine utilization while guaranteeing the
performance requirements.

The Scheduler coordinates the execution of multi-
ple stages via a late-binding event-based scheduling
mechanism similar to task scheduling in distributed sys-
tems [47, 63, 60]: each core runs an Executor instance
whereby all Executors pull work from a shared pair of
queues: one low priority queue for newly submitted plans,
and one high priority queue for already started stages. At
runtime, a scheduling event is generated for each stage
with related set of input/output vectors, and routed over a
queue (low priority if the stage is the head of a pipeline,
high priority otherwise). Two queues with different pri-
orities are necessary because of memory requirements.
Vectors are in fact requested per pipeline (not per stage)
and lazily fulfilled when a pipeline’s first stage is be-
ing evaluated on an Executor. Vectors are then utilized
and not re-added to the pool for the full execution of the
pipeline. Two priority queues allow started pipelines to
be scheduled earlier and therefore return memory quickly.

Reservation-based Scheduling: Upon model plan regis-
tration, PRETZEL offers the option to reserve memory or
computation resources for exclusive use. Such resources
reside on different, pipeline-specific pools, and are not
shared among plans, therefore enabling container-like pro-
vision of resources. Note however that parameters and
physical stage objects remain shared between pipelines
even if reservation-based scheduling is requested.

4.3 Additional Optimizations

Sub-plan Materialization: Similarly to materialized
views in database multi-query optimization [37, 29], re-
sults of installed physical stages can be reused between
different model plans. When plans are loaded in the run-
time, PRETZEL keeps track of physical stages and enables
caching of results when a stage with the same parameters
is shared by many model plans. Hashing of the input is
used to decide whether a result is already available for that
stage or not. We implemented a simple Least Recently
Used (LRU) strategy on top of the Object Store to evict
results when a given memory threshold is met.
External Optimizations: While the techniques de-
scribed so far focus mostly on improvements that other
prediction serving systems are not able to achieve due
to their black box nature, PRETZEL FrontEnd also sup-
ports “external” optimizations such as the one provided in
Clipper and Rafiki. Specifically, the FrontEnd currently
implements prediction results caching (with LRU eviction
policy) and delayed batching whereby inference requests
are buffered for a user-specified amount of time and then
submitted in batch to the Runtime. These external op-
timizations are orthogonal to PRETZEL’s techniques, so
both are applicable in a complementary manner.

5 Evaluation

PRETZEL implementation is a mix of C# and C++. In its
current version, the system comprises 12.6K LOC (11.3K
in C#, 1.3K in C++) and supports about two dozens of
ML.Net operators, among which linear models (e.g., lin-
ear/logistic/Poisson regression), tree-based models, clus-
tering models (e.g., K-Means), Principal Components
Analysis (PCA), and several featurizers.
Scenarios: The goals of our experimental evaluation are
to evaluate how the white box approach performs com-
pared to black box. We will use the following scenarios
to drive our evaluation:

• memory: in the first scenario, we want to show
how much memory saving PRETZEL’s white box
approach is able to provide with respect to regular
ML.Net and ML.Net boxed into Docker containers
managed by Clipper.

• latency: this experiment mimics a request/response
pattern (e.g., [19]) such as a personalized web-
application requiring minimal latency. In this sce-
nario, we run two different configurations: (1) a
micro-benchmark measuring the time required by a
system to render a prediction; and (2) an experiment
measuring the total end-to-end latency observed by

9

Table 1: Characteristics of pipelines in experiments.

Type
Sentiment
Analysis (SA)

Attendee
Count (AC)

Input
Plain Text
(variable length)

Structured Text
(40 dimensions)

Size
50MB - 100MB
(Mean: 70MB)

10KB - 20MB
(Mean: 9MB)

Featurizers
N-gram with
dictionaries
(∼1M entries)

PCA, KMeans,
Ensemble of
multiple models

a client submitting a request.
• throughput: this scenario simulates a batch pattern

(e.g., [8]) and we use it to assess the throughput of
PRETZEL compared to ML.Net.

• heavy-load: we finally mix the above experiments
and show PRETZEL’s ability to maintain high
throughput and graceful degradation of latency, as
load increases. To be realistic, in this scenario we
generate skewed load across different pipelines. As
for the latency experiment, we report first the PRET-
ZEL’s performance using a micro-benchmark, and
then we compare it against the containerized version
of ML.Net in an end-to-end setting.

Configuration: All the experiments reported in the paper
were carried out on a Windows 10 machine with 2 × 8-
core Intel Xeon CPU E5-2620 v4 processors at 2.10GHz
with Hyper Threading disabled, and 32GB of RAM. We
used .Net Core version 2.0, ML.Net version 0.4, and
Clipper version 0.2. For ML.Net, we use two black box
configurations: a non-containerized one (1 ML.Net in-
stance for all models), and a containerized one (1 ML.Net
instance for each model) where ML.Net is deployed as
Docker containers running on Windows Subsystem for
Linux (WSL) and orchestrated by Clipper. We commonly
label the former as just ML.Net; the latter as ML.Net
+ Clipper. For PRETZEL we AOT-compile stages using
CrossGen [16]. For the end-to-end experiments compar-
ing PRETZEL and ML.Net + Clipper, we use an ASP.Net
FrontEnd for PRETZEL; the Redis front-end for Clipper.
We run each experiment 3 times and report the median.

Pipelines: Table 1 describes the two types of model
pipelines we use in the experiments: 250 unique versions
of Sentiment Analysis (SA) pipeline, and 250 different
pipelines implementing Attendee Count (AC): a regres-
sion task used internally to predict how many attendees
will join an event. Pipelines within a category are similar:
in particular, pipelines in the SA category benefit from
sub-plan materialization, while those in the AC category
are more diverse and do not benefit from it. These lat-

ter pipelines comprise several ML models forming an
ensemble: in the most complex version, we have a di-
mensionality reduction step executed concurrently with
a KMeans clustering, a TreeFeaturizer, and multi-class
tree-based classifier, all fed into a final tree (or forest)
rendering the prediction. SA pipelines are trained and
scored over Amazon Review dataset [38]; AC ones are
trained and scored over an internal record of events.

5.1 Memory

In this experiment, we load all models and report the to-
tal memory consumption (model + runtime) per model
category. SA pipelines are large and therefore we ex-
pect memory consumption (and loading time) to improve
considerably within this class, proving that PRETZEL’s
Object Store allows to avoid the cost of loading dupli-
cate objects. Less gains are instead expected for the AC
pipelines because of their small size.

0 50 100 150 200 250

Model idx (SA)

10MB

0.1GB

1GB

10GB

C
u
m

u
la

ti
v
e
 M

e
m

o
ry

 U
s
a
g
e

(l

o
g
-s

c
a
le

d
)

 4 GB

32GB

ML.Net+
Clipper ML.Net

Pretzel
(no ObjStore) Pretzel

0 50 100 150 200 250

Model idx (AC)

164 MB

 4 GB

 10 GB

Figure 8: Cumulative memory usage (log-scaled) of the
pipelines in PRETZEL, ML.Net and ML.Net + Clipper.
The horizontal line represents the machine’s physical
memory (32GB). Only PRETZEL is able to load all SA
pipelines within the memory limit. For AC, PRETZEL
uses one order of magnitude less memory than ML.Net
and ML.Net + Clipper. The memory usage of PRETZEL
without Object Store is almost on par with ML.Net.

Figure 8 shows the memory usage for loading all the
250 model pipelines in memory, for both categories. For
SA, only PRETZEL with Object Store enabled can load
all pipelines. 5 For AC, all configurations are able to
load the entire working set, however PRETZEL occupies
only 164MBs: about 25× less memory than ML.Net and
62× less than ML.Net + Clipper. Given the nature of
AC models (i.e., small in size), from Figure 8 we can
additionally notice the overhead (around 2.5×) of using a
container-based black box approach vs regular ML.Net.

5Note that for ML.Net, ML.Net + Clipper and PRETZEL without
Object Store configurations we can load more models and go beyond
the 32GB limit. However, models are swapped to disk and the whole
system becomes unstable.

10

Keeping track of pipelines’ parameters also helps re-
ducing the time to load models: PRETZEL takes around
2.8 seconds to load 250 AC pipelines while ML.Net takes
around 270 seconds. For SA pipelines, PRETZEL takes
37.3 seconds to load all 250 pipelines, while ML.Net fills
up the entire memory (32GB) and begins to swap objects
after loading 75 pipelines in around 9 minutes.

5.2 Latency

In this experiment we study the latency behavior of PRET-
ZEL in two settings. First, we run a micro-benchmark
directly measuring the latency of rendering a prediction
in PRETZEL. Additionally, we show how PRETZEL’s
optimizations can improve the latency. Secondly, we re-
port the end-to-end latency observed by a remote client
submitting a request through HTTP.

10− 2 10− 1 100 101

Latency (ms, log-scaled)
(SA)

0

25

50

75

100

C
D

F
 (

%
)

0.19 0.61

8
.1

0
.8

10− 2 10− 1 100 101

Latency (ms, log-scaled)
(AC)

2.3 7.1

3
2

.9

5
.8

Pretzel
(hot)

Pretzel
(cold)

ML.Net
(hot)

ML.Net
(cold)

Figure 9: Latency comparison between ML.Net and
PRETZEL. The accompanying blue lines represent the
cold latency (first execution of the pipelines). On top are
the P99 latency values: the hot case is above the horizon-
tal line and the cold case is annotated with an arrow.

5.2.1 Micro-benchmark

Inference requests are submitted sequentially and in iso-
lation for one model at a time. For PRETZEL we use the
request-response engine over one single core. The com-
parison between PRETZEL and ML.Net for the SA and
AC pipelines is reported in Figure 9. We start with study-
ing hot and cold cases while comparing PRETZEL and
ML.Net. Specifically, we label as cold the first prediction
requested for a model; the successive 10 predictions are
then discarded and we report hot numbers as the average
of the following 100 predictions.

If we directly compare PRETZEL with ML.Net, PRET-
ZEL is 3.2× and 3.1× faster than ML.Net in the 99th
percentile latency in hot case (denoted by P99hot), and
about 9.8× and 5.7× in the P99cold case, for SA and AC
pipelines, respectively. If instead we look at the difference

between cold and hot cases relative to each system, PRET-
ZEL again provides improvements over ML.Net. The
P99cold is about 13.3× and 4.6× the P99hot in ML.Net,
whereas in PRETZEL P99cold is around 4.2× and 2.5×
from the P99hot case. Furthermore, PRETZEL is able to
mitigate the long tail latency (worst case) of cold scor-
ing. In SA pipelines, the worst case latency is 460.6× off
the P99hot in ML.Net, whereas PRETZEL shows a 33.3×
difference. Similarly, in AC pipelines the worst case is
21.2× P99hot for ML.Net, and 7.5× for PRETZEL.

To better understand the effect of PRETZEL’s optimiza-
tions on latency, we turn on and off some optimizations
and compare the performance.
AOT compilation: This options allows PRETZEL to pre-
load all stage code into cache, removing the overhead of
JIT compilation in the cold cases. Without AOT compila-
tion, latencies of cold predictions increase on average by
1.6× and 4.2× for SA and AC pipelines, respectively.
Vector Pooling: By creating pools of pre-allocated vec-
tors, PRETZEL can minimize the overhead of memory
allocation at prediction time. When we do not pool vec-
tors, latencies increase in average by 47.1% for hot and
24.7% for cold, respectively.

0 25 50 75 100 125 150 175 200
Latency (us) (SA)

0

25

50

75

100

C
D

F
 (

%
)

Pretzel
Pretzel + Sub-plan
 materialization

Figure 10: Latency of PRETZEL to run SA models with
and without sub-plan materialization. Around 80% of
SA pipelines show more than 2× speedup. Sub-plan
materialization does not apply for AC pipelines.

Sub-plan Materialization: If different pipelines have
common featurizers (e.g., SA as shown in Figure 3), we
can further apply sub-plan materialization to reduce the
latency. Figure 10 depicts the effect of sub-plan mate-
rialization over prediction latency for hot requests. In
general, for the SA pipelines in which sub-plan materi-
alization applies, we can see an average improvement of
2.0×, while no pipeline shows performance deterioration.

5.2.2 End-to-end

In this experiment we measure the end-to-end latency
from a client submitting a prediction request. For PRET-
ZEL, we use the ASP.Net FrontEnd, and we compare
against ML.Net + Clipper. The end-to-end latency con-

11

10− 1 100 101

Latency (ms, log-scaled)
(SA)

0

25

50

75

100

C
D

F
 (

%
)

8.218.0

0
.9

3

2
.0

10− 1 100 101

Latency (ms, log-scaled)
(AC)

10.025.0

3
.9

1
0
.0

Pretzel (prediction)

Pretzel (client-server)

ML.Net

ML.Net+Clipper

Figure 11: The latency comparison between ML.Net +
Clipper and PRETZEL with ASP.Net FrontEnd. The over-
head of client-server communication compared to the
actual prediction is similar in both PRETZEL and ML.Net:
the end-to-end latency compared to the just prediction
latency is 9× slower in SA and 2.5× in AC, respectively.

siders both the prediction latency (i.e., Figure 9) as well
as any additional overhead due to client-server communi-
cation. As shown in Figure 11, the latter overhead in both
PRETZEL and ML.Net + Clipper is in the milliseconds
range (around 4ms for the former, and 9 for the latter).
Specifically, with PRETZEL, clients observe a latency of
4.3ms at P99 for SA models (vs. 0.56ms P99 latency of
just rendering a prediction) and a latency of 7.3ms for AC
models (vs. 3.5ms). In contrast, in ML.Net + Clipper,
clients observe 9.3ms latency at P99 for SA models, and
18.0ms at P99 for AC models.

5.3 Throughput

In this experiment, we run a micro-benchmark assuming
a batch scenario where all 500 models are scored sev-
eral times. We use an API provided by both PRETZEL
and ML.Net, where we can execute prediction queries
in batches: in this experiment we fixed the batch size at
1000 queries. We allocate from 2 up to 13 CPU cores
to serve requests, while 3 cores are reserved to generate
them. The main goal is to measure the maximum number
of requests PRETZEL and ML.Net can serve per second.

Figure 12 shows that PRETZEL’s throughput (queries
per second) is up to 2.6× higher than ML.Net for SA mod-
els, 10× for AC models. PRETZEL’s throughput scales
on par with the expected ideal scaling. Instead, ML.Net
suffers from higher latency in rendering predictions and
from lower scalability when the number of CPU cores
increases. This is because each thread has its own internal
copy of models whereby cache lines are not shared, thus
increasing the pressure on the memory subsystem: indeed,
even if the parameters are the same, the model objects are
allocated to different memory areas.

1 2 4 8 13

Num. CPU Cores
(SA)

0

50

100

150

T
h
ro

u
g
h
p
u
t

(K
 Q

P
S
)

(ideal)

(ideal)

Pretzel

ML.Net

1 2 4 8 13

Num. CPU Cores
(AC)

0

5

10

15
(ideal)

(ideal)

Figure 12: The average throughput computed among the
500 models to process one million inputs each. We scale
the number of CPU cores on the x-axis and the number of
prediction queries to be served per second on the y-axis.
PRETZEL scales linearly to the number of CPU cores.

5.4 Heavy Load
In this experiment, we show how the performance changes
as we change the load. To generate a realistic load, we
submit requests to models by following the Zipf distri-
bution (α = 2).6 As in Section 5.2, we first run a micro-
benchmark, followed by an end-to-end comparison.

0 100 200 300 400 500

Load (requests per second)

0

1

2

3

4

5

6
L
a
te

n
c
y
 (

s
e
c
)

0

5

10

15

20

25

T
h
ro

u
h
g
p
u
t

(K
 Q

P
S
)Throughput Mean Latency

Figure 13: Throughput and latency of PRETZEL under
the heavy load scenario. We maintain all 500 models in-
memory within a PRETZEL instance, and we increase the
load by submitting more requests per second. We report
latency measurements from latency-sensitive pipelines,
and the total system throughput.

5.4.1 Micro-benchmark

We load all 500 models in one PRETZEL instance. Among
all models, we assume 50% to be “latency-sensitive" and
therefore we set a batch size of 1. The remaining 50%
models will be requested with 100 queries in a batch. As
in the throughput experiment, we use the batch engine
with 13 cores to serve requests and 3 cores to generate
load. Figure 13 reports the average latency of latency-
sensitive models and the total system throughput under
different load configurations. As we increase the number
of requests, PRETZEL’s throughput increases linearly until
it stabilizes at about 25k queries per second. Similarly, the
average latency of latency-sensitive pipelines gracefully
increases linearly with the load.

6The number of requests to the ith most popular models is propor-
tional to i−α , where α is the parameter of the distribution.

12

0 100 200 300 400 500

Load (requests per second)

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(Q
P
S
)

Pretzel ML.Net+Clipper

0 100 200 300 400 500

Load (requests per second)

0

1

2

3

4

5

L
a
te

n
c
y
 (

s
e
c
)

Figure 14: Throughput and latency of PRETZEL and
ML.Net + Clipper under the end-to-end heavy load sce-
nario. We use 250 AC pipelines to allow both systems to
have all pipelines in memory.

Reservation Scheduling: If we want to guarantee that
the performance of latency-critical pipelines is not de-
grading excessively even under high load, we can enable
reservation scheduling. If we run the previous experiment
reserving one core (and related vectors) for one model,
this does not encounter any degradation in latency (max
improvement of 3 orders of magnitude) as the load in-
creases, while maintaining similar system throughput.

5.4.2 End-to-end

In this setup, we periodically send prediction requests
to PRETZEL with the ASP.Net FrontEnd and ML.Net +
Clipper. We assume all pipelines to be latency-sensitive,
thus we set a batch of 1 for each request. As we can see in
Figure 14, PRETZEL’s throughput keeps increasing up to
around 300 requests per second. If the load exceeds that
point, the throughput and the latency begin to fluctuate.
On the other hand, the throughput of ML.Net + Clipper is
considerably lower than PRETZEL’s and does not scale as
the load increases. Also the latency of ML.Net + Clipper
is several folds higher than with PRETZEL. The difference
is due to the overhead of maintaining hundreds of Docker
containers; too many context switches occur across/within
containers.

6 Limitations and Future Work

Off-line Phase: PRETZEL has two limitations regarding
Flour and Oven design. First, PRETZEL currently has sev-
eral logical and physical stages classes, one per possible
implementation, which make the system difficult to main-
tain in the long run. Additionally, different back-ends
(e.g., PRETZEL currently supports operators implemented
in C# and C++, and experimentally on FPGA [53]) require
all specific operator implementations. We are however
confident that this limitation will be overcome once code
generation of stages will be added (e.g., with hardware-

specific templates [41]). Secondly, Flour and Oven are
currently limited to pipelines authored in ML.Net, and
porting models from different frameworks to the white
box approach may require non-trivial work. On the long
run our goal is, however, to target unified formats such
as ONNX [7]; this will allow us to apply the discussed
techniques to models from other ML frameworks as well.
On-line Phase: PRETZEL’s fine-grained, stage-based
scheduling may introduce additional overheads in con-
trasts to coarse-grained whole pipeline scheduling due
to additional buffering and context switching. However,
such overheads are related to the system load and there-
fore controllable by the scheduler. Additionally, we found
GC overheads to introduce spikes in latency. Although
our implementation tries to minimize the number of ob-
jects created at runtime, in practice we found that long
tail latencies are common. On white box architectures,
failures happening during the execution of a model may
jeopardize the whole system. We are currently working
on isolating model failures over the target Executor. Fi-
nally, PRETZEL runtime currently runs on a single-node.
An experimental scheduler adds Non Uniform Memory
Access (NUMA) awareness to scheduling policies. We
expect this scheduler to bring benefits for models served
from large instances (e.g., [12]). We expect in the future
to be able to scale the approach over distributed machines,
with automatic scale in/out capabilities.

7 Related Work

Prediction Serving: As from the Introduction, current
ML prediction systems [9, 32, 5, 46, 17, 30, 18, 43,
59, 15] aim to minimize the cost of deployment and
maximize code re-use between training and inference
phases [65]. Conversely, PRETZEL casts prediction serv-
ing as a database problem and applies end-to-end and
multi-query optimizations to maximize performance and
resource utilization. Clipper and Rafiki deploy pipelines
as Docker containers connected through RPC to a front
end. Both systems apply external model-agnostic tech-
niques to achieve better latency, throughput, and accuracy.
While we employed similar techniques in the FrontEnd,
in PRETZEL we have not yet explored “best effort” tech-
niques such as ensembles, straggler mitigation, and model
selection. TensorFlow Serving deploys pipelines as Serv-
ables, which are units of execution scheduling and ver-
sion management. One Servable is executed as a black
box, although users are allowed to split model pipelines
and surface them into different Servables, similarly to
PRETZEL’s stage-based execution. Such optimization is
however not automatic. LASER [22] enables large scale

13

training and inference of logistic regression models, apply-
ing specific system optimizations to the problem at hand
(i.e., advertising where multiple ad campaigns are run on
each user) such as caching of partial results and graceful
degradation of accuracy. Finally, runtimes such as Core
ML [10] and Windows ML [21] provide on-device infer-
ence engines and accelerators. To our knowledge, only
single operator optimizations are enforced (e.g., using
target mathematical libraries or hardware), while neither
end-to-end nor multi-model optimizations are used. As
PRETZEL, TVM [20, 28] provides a set of logical opera-
tors and related physical implementations, backed by an
optimizer based on the Halide language [49]. TVM is spe-
cialized on neural network models and does not support
featurizers nor “classical” models.

Optimization of ML Pipelines: There is a recent in-
terest in the ML community in building languages and
optimizations to improve the execution of ML work-
loads [20, 44, 27, 3, 39]. However, most of them ex-
clusively target Neural Networks and heterogeneous hard-
ware. Nevertheless, we are investigating the possibility to
substitute Flour with a custom extension of Tensor Com-
prehension [57] to express featurization pipelines. This
will enable the support for Neural Network featurizers
such as word embeddings, as well as code generation
capabilities (for heterogeneous devices). We are confi-
dent that the set of optimizations implemented in Oven
generalizes over different intermediate representations.

Uber’s Michelangelo [2] has a Scala DSL that can
be compiled into bytecode which is then shipped with
the whole model as a zip file for prediction. Similarly,
H2O [1] compiles models into Java classes for serving.
This is exactly how ML.Net currently works. Conversely,
similar to database query optimizers, PRETZEL rewrites
model pipelines both at the logical and at the physical
level. KeystoneML [55] provides a high-level API for
composing pipelines of operators similarly to Flour, and
also features a query optimizer similar to Oven, albeit
focused on distributed training. KeystoneML’s cost-based
optimizer selects the best physical implementation based
on runtime statistics (gathered via sampling), while no
logical level optimizations is provided. Instead, PRET-
ZEL provides end-to-end optimizations by analyzing logi-
cal plans [33, 40, 45, 26], while logical-to-physical map-
pings are decided based on stage parameters and statistics
from training. Similarly to the SOFA optimizer [51],
we annotate transformations based on logical character-
istics. MauveDB [34] uses regression and interpolation
models as database views and optimizes them as such.
MauveDB models are tightly integrated into the database,
thus only a limited class of declaratively definable models

is efficiently supported. As PRETZEL, KeystoneML and
MauveDB provide sub-plan materialization.

Scheduling: Both Clipper [9] and Rafiki [59] schedule
inference requests based on latency targets and provide
adaptive algorithms to maximize throughput and accuracy
while minimizing stragglers, for which they both use en-
semble models. These techniques are external and orthog-
onal to the ones provided in PRETZEL. To our knowledge,
no model serving system explored the problem of schedul-
ing requests while sharing resource between models, a
problem that PRETZEL addresses with techniques simi-
lar to distributed scheduling in cloud computing [47, 62].
Scheduling in white box prediction serving share simi-
larities with operators scheduling in stream processing
systems [25, 56] and web services [60].

8 Conclusion

Inspired by the growth of ML applications and ML-as-
a-service platforms, this paper identified how existing
systems fall short in key requirements for ML prediction-
serving, disregarding the optimization of model execution
in favor of ease of deployment. Conversely, this work
casts the problem of serving inference as a database prob-
lem where end-to-end and multi-query optimization strate-
gies are applied to ML pipelines. To decrease latency, we
have developed an optimizer and compiler framework
generating efficient model plans end-to-end. To decrease
memory footprint and increase resource utilization and
throughput, we allow pipelines to share parameters and
physical operators, and defer the problem of inference
execution to a scheduler that allows running multiple pre-
dictions concurrently on shared resources.

Experiments with production-like pipelines show the
validity of our approach in achieving an optimized exe-
cution: PRETZEL delivers order-of-magnitude improve-
ments on previous approaches and over different perfor-
mance metrics.

Acknowledgments

We thank our shepherd Matei Zaharia and the anonymous
reviewers for their insightful comments. Yunseong Lee
and Byung-Gon Chun were partly supported by the MSIT
(Ministry of Science and ICT), Korea, under the SW Star-
lab support program (IITP-2018-R0126-18-1093) super-
vised by the IITP (Institute for Information & commu-
nications Technology Promotion), and by the ICT R&D
program of MSIT/IITP (No.2017-0-01772, Development
of QA systems for Video Story Understanding to pass the
Video Turing Test).

14

References

[1] H2O. https://www.h2o.ai/.

[2] Michelangelo. https://eng.uber.com/
michelangelo/.

[3] TensorFlow XLA. https://www.tensorflow.
org/performance/xla/.

[4] TensorFlow. https://www.tensorflow.org,
2016.

[5] TensorFlow serving. https://www.tensorflow.
org/serving, 2016.

[6] Caffe2. https://caffe2.ai, 2017.

[7] Open Neural Network Exchange (ONNX). https://
onnx.ai, 2017.

[8] Batch python API in Microsoft machine learning server,
2018.

[9] Clipper. http://clipper.ai/, 2018.

[10] Core ML. https://developer.apple.com/
documentation/coreml, 2018.

[11] Docker. https://www.docker.com/, 2018.

[12] Ec2 large instances and numa. https://forums.
aws.amazon.com/thread.jspa?threadID=
144982, 2018.

[13] Keras. https://www.tensorflow.org/api_
docs/python/tf/keras, 2018.

[14] ML.Net. https://dot.net/ml, 2018.

[15] MXNet Model Server (MMS). https://github.
com/awslabs/mxnet-model-server, 2018.

[16] .Net Core Ahead of Time Compilation with Cross-
Gen. https://github.com/dotnet/coreclr/
blob/master/Documentation/building/
crossgen.md, 2018.

[17] PredictionIO. https://predictionio.apache.
org/, 2018.

[18] Redis-ML. https://github.com/
RedisLabsModules/redis-ml, 2018.

[19] Request response python API in Microsoft machine
learning server. https://docs.microsoft.
com/en-us/machine-learning-server/
operationalize/python/
how-to-consume-web-services, 2018.

[20] TVM. https://tvm.ai/, 2018.

[21] Windows ml. https://docs.microsoft.com/
en-us/windows/uwp/machine-learning/
overview, 2018.

[22] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang.
LASER: A scalable response prediction platform for on-
line advertising. In WSDM, 2014.

[23] Z. Ahmed and et al. Machine learning for applications,
not containers (under submission), 2018.

[24] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: Relational data processing in
spark. In SIGMOD, 2015.

[25] B. Babcock, S. Babu, M. Datar, R. Motwani, and
D. Thomas. Operator scheduling in data stream systems.
The VLDB Journal, 13(4):333–353, Dec. 2004.

[26] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. pages 225–237, 2005.

[27] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. CoRR, 2015.

[28] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM:
end-to-end optimization stack for deep learning. CoRR,
2018.

[29] R. Chirkova and J. Yang. Materialized views. Foundations
and Trends in Databases, 4(4):295–405, 2012.

[30] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang,
M. J. Franklin, A. Ghodsi, and M. I. Jordan. The missing
piece in complex analytics: Low latency, scalable model
management and serving with Velox. In CIDR, 2015.

[31] D. Crankshaw and J. Gonzalez. Prediction-serving sys-
tems. Queue, 16(1):70:83–70:97, Feb. 2018.

[32] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A low-latency online
prediction serving system. In NSDI, 2017.

[33] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,
U. Cetintemel, and S. Zdonik. An architecture for compil-
ing UDF-centric workflows. PVLDB, 8(12):1466–1477,
Aug. 2015.

[34] A. Deshpande and S. Madden. MauveDB: Supporting
model-based user views in database systems. In SIGMOD,
2006.

[35] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tor-
nado: Maximizing locality and concurrency in a shared
memory multiprocessor operating system. In OSDI, 1999.

[36] G. Graefe. Volcano: An extensible and parallel query
evaluation system. IEEE Trans. on Knowl. and Data Eng.,
6(1):120–135, Feb. 1994.

[37] A. Y. Halevy. Answering queries using views: A survey.
The VLDB Journal, 10(4):270–294, Dec. 2001.

[38] R. He and J. McAuley. Ups and downs: Modeling the
visual evolution of fashion trends with one-class collabo-
rative filtering. In WWW, 2016.

[39] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
NoScope: Optimizing neural network queries over video
at scale. PVLDB, 10(11):1586–1597, Aug. 2017.

15

https://www.h2o.ai/
https://eng.uber.com/michelangelo/
https://eng.uber.com/michelangelo/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org
https://www.tensorflow.org/serving
https://www.tensorflow.org/serving
https://caffe2.ai
https://onnx.ai
https://onnx.ai
http://clipper.ai/
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://www.docker.com/
https://forums.aws.amazon.com/thread.jspa?threadID=144982
https://forums.aws.amazon.com/thread.jspa?threadID=144982
https://forums.aws.amazon.com/thread.jspa?threadID=144982
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://dot.net/ml
https://github.com/awslabs/mxnet-model-server
https://github.com/awslabs/mxnet-model-server
https://github.com/dotnet/coreclr/blob/master/Documentation/building/crossgen.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/crossgen.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/crossgen.md
https://predictionio.apache.org/
https://predictionio.apache.org/
https://github.com/RedisLabsModules/redis-ml
https://github.com/RedisLabsModules/redis-ml
 https://docs.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-consume-web-services
 https://docs.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-consume-web-services
 https://docs.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-consume-web-services
 https://docs.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-consume-web-services
https://tvm.ai/
https://docs.microsoft.com/en-us/windows/uwp/machine-learning/overview
https://docs.microsoft.com/en-us/windows/uwp/machine-learning/overview
https://docs.microsoft.com/en-us/windows/uwp/machine-learning/overview

[40] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis,
H. Mühe, T. Mühlbauer, and W. Rödiger. Processing in
the hybrid OLTP & OLAP main-memory database system
hyper. IEEE Data Eng. Bull., 36(2):41–47, 2013.

[41] K. Krikellas, S. Viglas, and M. Cintra. Generating code
for holistic query evaluation. In ICDE, 2010.

[42] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconcil-
ing object, relations and XML in the .NET framework. In
SIGMOD, 2006.

[43] A. N. Modi, C. Y. Koo, C. Y. Foo, C. Mewald, D. M.
Baylor, E. Breck, H.-T. Cheng, J. Wilkiewicz, L. Koc,
L. Lew, M. A. Zinkevich, M. Wicke, M. Ispir, N. Polyzotis,
N. Fiedel, S. E. Haykal, S. Whang, S. Roy, S. Ramesh,
V. Jain, X. Zhang, and Z. Haque. TFX: A TensorFlow-
based production-scale machine learning platform. In
SIGKDD, 2017.

[44] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Am-
mar, A. Anastasopoulos, M. Ballesteros, D. Chiang,
D. Clothiaux, T. Cohn, K. Duh, M. Faruqui, C. Gan,
D. Garrette, Y. Ji, L. Kong, A. Kuncoro, G. Kumar,
C. Malaviya, P. Michel, Y. Oda, M. Richardson, N. Saphra,
S. Swayamdipta, and P. Yin. DyNet: The dynamic neural
network toolkit. ArXiv e-prints, 2017.

[45] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. PVLDB, 4(9):539–550, June 2011.

[46] C. Olston, F. Li, J. Harmsen, J. Soyke, K. Gorovoy, L. Lao,
N. Fiedel, S. Ramesh, and V. Rajashekhar. Tensorflow-
serving: Flexible, high-performance ml serving. In Work-
shop on ML Systems at NIPS, 2017.

[47] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Spar-
row: Distributed, low latency scheduling. In SOSP, 2013.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in python. J. Mach. Learn. Res.,
12:2825–2830, Nov. 2011.

[49] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A language and compiler
for optimizing parallelism, locality, and recomputation in
image processing pipelines. In PLDI, 2013.

[50] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, NIPS. 2011.

[51] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and F. Nau-
mann. SOFA: an extensible logical optimizer for udf-heavy
data flows. Inf. Syst., 52:96–125, 2015.

[52] S. Ruder. An overview of gradient descent optimization
algorithms. CoRR, 2016.

[53] A. Scolari, Y. Lee, M. Weimer, and M. Interlandi. Towards
accelerating generic machine learning prediction pipelines.
In IEEE ICCD, 2017.

[54] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordi-
nate ascent methods for regularized loss. J. Mach. Learn.
Res., 14(1):567–599, Feb. 2013.

[55] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin,
and B. Recht. KeystoneML: Optimizing pipelines for
large-scale advanced analytics. In ICDE, 2017.

[56] T. Um, G. Lee, S. Lee, K. Kim, and B.-G. Chun. Scaling
up IoT stream processing. In APSys, 2017.

[57] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. De-
Vito, W. S. Moses, S. Verdoolaege, A. Adams, and A. Co-
hen. Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions. CoRR, 2018.

[58] S. Wanderman-Milne and N. Li. Runtime code generation
in cloudera impala. IEEE Data Eng. Bull., 37:31–37, 2014.

[59] W. Wang, S. Wang, J. Gao, M. Zhang, G. Chen, T. K. Ng,
and B. C. Ooi. Rafiki: Machine Learning as an Analytics
Service System. ArXiv e-prints, Apr. 2018.

[60] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. In
SOSP, 2001.

[61] J.-M. Yun, Y. He, S. Elnikety, and S. Ren. Optimal aggre-
gation policy for reducing tail latency of web search. In
SIGIR, 2015.

[62] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, 2010.

[63] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

[64] C. Zhang, A. Kumar, and C. Ré. Materialization opti-
mizations for feature selection workloads. ACM Trans.
Database Syst., 41(1):2:1–2:32, Feb. 2016.

[65] M. Zinkevich. Rules of machine learn-
ing: Best practices for ML engineering.
https://developers.google.com/machine-learning/rules-of-
ml.

[66] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. Monet-
DB/X100 - a DBMS in the CPU cache. IEEE Data Eng.
Bull., 28(2):17–22, 2005.

16

	Introduction
	Model Serving: State-of-the-Art and Limitations
	White Box Prediction Serving: Design Principles
	The Pretzel System
	Off-line Phase
	Flour
	Oven
	Object Store

	On-line Phase
	Runtime
	Scheduler

	Additional Optimizations

	Evaluation
	Memory
	Latency
	Micro-benchmark
	End-to-end

	Throughput
	Heavy Load
	Micro-benchmark
	End-to-end

	Limitations and Future Work
	Related Work
	Conclusion

