Scaling Up loT Stream Processing

Taegeon Um
Seoul National University

Kyungtae Kim

Seoul National University

ABSTRACT

Users create large numbers of IoT stream queries with data
streams generated from various IoT devices. Current stream
processing systems such as Storm and Flink are unable to
support such large numbers of [oT stream queries efficiently,
as their execution models cause a flurry of cache misses while
processing the events of the queries. To solve this problem, we
present a new group-aware execution model, which processes
the events of IoT stream queries in a way that exploits the
locality of data and code references, to reduce cache misses
and improve system performance. The group-aware execu-
tion model leverages the fact that users create the groups
of queries according to their interests or location contexts
and that queries in the same group can share the same data
and codes. We realize the group-aware execution model on
MIST—a new stream processing system tailored for pro-
cessing many loT stream queries efficiently—to scale up the
number of IoT queries that can be processed in a machine.
Our preliminary evaluation shows that our group-aware ex-
ecution model increases the number of queries that can be
processed within a single machine up to 3.18x compared to
the Flink-based execution model.

ACM Reference format:

Taegeon Um, Gyewon Lee, Sanha Lee, Kyungtae Kim, and Byung-
Gon Chun. 2017. Scaling Up IoT Stream Processing. In Proceedings
of APSys ’17, Mumbai, India, September 2, 2017, T pages.
https://doi.org/10.1145/3124680.3124746

1 INTRODUCTION

Internet of Things (IoT) devices generate various real-time
data streams in diverse places, such as real-time temperature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

APSys '17, September 2, 2017, Mumbai, India

© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.

ACM ISBN 978-1-4503-5197-3/17/09. ... $15.00
https://doi.org/10.1145/3124680.3124746

Gyewon Lee
Seoul National University

Sanha Lee

Seoul National University

Byung-Gon Chun

Seoul National University

in homes [11, 15], fertility in farms [24], ball movement in
stadiums [10], the number of cars in parking lots [13], and
much more. From these data streams, users can create IoT
stream queries—continuously processing data streams gen-
erated from their IoT devices—to obtain useful information
or to control their IoT devices with low latency. These IoT
stream queries handle a small amount of data streams re-
lated to users’ interests. For instance, users can create queries
that notify them of break-in at their home by inspecting the
data streams generated from their home doors, or that adjust
the fan speed of the air conditioner by analyzing the room
humidity and temperature data streams.

As users have various query requests on diverse [oT devices
deployed, they create many stream queries that are tailored to
their concerns. If the number of users is 10 million, with each
user creating 100 queries, then the number of queries becomes
1 billion. Thus, the number of [oT stream queries is huge. This
workload—Ilarge numbers of small queries—is very different
from the workloads that current stream processing systems
target: small number of stream queries that process a large
amount of data.

Current stream processing systems (SPSs) [8, 23, 27] such
as Storm, Flink, and Spark Streaming do not efficiently sup-
port large numbers of IoT stream queries efficiently, because
their execution models cause a flurry of cache misses for this
workload. When processing stream queries, they create sepa-
rate processes or threads per query. This design works well
on the distributed execution of big queries. However, when
running large numbers of IoT stream queries, this execution
model causes frequent context switching among threads (or
processes). Since each thread holds the data of each query,
such as input data streams, internal query states and codes,
the frequent context switching increases the working set size
in a CPU, resulting in frequent cache misses, which in turn
increases CPU use and hinders SPSs from processing many
IoT stream queries.

To solve this problem, we take advantage of the fact that
users can naturally create groups of IoT queries according
to the users’ intentions. For example, a user who intends to
control her house can create a home group and add her home-
control IoT queries to the group. Queries inside the same
group can process common data streams and have common
application codes (logic). For example, in the home group,

https://doi.org/10.1145/3124680.3124746
https://doi.org/10.1145/3124680.3124746

APSys ’17, September 2, 2017, Mumbai, India

queries that adjust the air conditioner or the heater accord-
ing to the current home temperature process the same home
temperature data stream. In addition, queries adjusting the
temperature of different rooms inside the home can use the
same code to modify the room temperatures.

In this paper, we design a new group-aware execution
model that processes the events of queries in a way that ex-
ploits the locality of data and code references. The group-
aware execution model enables a single thread to consecu-
tively process all the events of queries within the same group.
This execution model reduces CPU cache misses and im-
proves system performance, since the data and code residing
in the CPU cache will be reused. We realize the group-aware
execution model on MIST—a new stream processing system
aimed at supporting large numbers of IoT stream queries in a
cluster of machines. The group-aware execution model scales
up MIST to increase IoT queries that can be processed in a
single machine; thus it helps MIST minimize the necessary
number of machines to process billions of IoT queries. Our
preliminary evaluation shows that the group-aware execution
model improves the maximum number of stream queries that
can be processed in a single machine up to 3.18%, compared
to the Flink-based execution model, while maintaining the
median latency below 10 ms.

2 BACKGROUND AND MOTIVATION

In this section, we describe the execution models of current
stream processing systems (SPSs) by investigating two popu-
lar streaming frameworks: Storm [23] and Flink [8]. We show
the limitations of their execution models in dealing with large
numbers of IoT stream queries.

2.1 Directed Acyclic Graph

Modern SPSs [8, 23, 27] are designed for users to easily run
big stream queries on distributed environments. They rep-
resent a stream query as a data-flow DAG (directed acyclic
graph). In a DAG, a vertex (v) is either a source (s), an op-
erator (0), or a sink (k). An edge (vx — v,) represents the
stream of data flowing from the upstream vertex (v) to the
downstream vertex (v,). We explain the details of the data
stream and each type of vertex as follows:

e Data Stream: A data stream consists of continuous
events, and each event is a pair of a value and a times-
tamp. The value holds real-world information, such as
the current temperature or location, and the timestamp
specifies the time of event generation.

e Source: A source is the root vertex of a DAG, and it
fetches or receives a data stream from external systems,
such as Kafka [14] or MQTT Broker [7]. It sends input
events to downstream operators. This operation is I/O-
bound because it receives data from the network.

Taegeon Um et al.

e Operator: An operator is the intermediate vertex that
has incoming and outgoing edges. Operator receives
events, processes their values according to the defined
operation (filter, map, windowing, aggregation, or user-
defined function), and it emits the processed events as
input events to downstream vertices. In general, opera-
tions, such as filters, maps, windowing, or aggregates,
are CPU-bound computations.

e Sink: A sink is the leaf vertex of a DAG, and emits
input events to external systems. It is I/O bound because
it sends data through the network.

2.2 Execution Model and Limitations

We explain the execution models of two popular streaming
systems—Storm and Flink—to show how they execute DAGs.
After that, we investigate their limitations of processing large
numbers of IoT stream queries.

2.2.1 Execution Model. Storm and Flink are good at
processing a rather small number of big queries in a dis-
tributed manner, by creating separate processes (in Storm)
and threads (in Flink) per DAG.

Storm [23] represents the DAG of a query as a topology
consisting of two component types: spouts and bolts. A spout
is mapped to a source, and a bolt is mapped to an operator
or a sink. To run a topology, Storm creates one or more JVM
processes, called Workers, and distributes spouts and bolts
across these Workers. Each Worker maintains several threads,
called Executors, and each Executor has an incoming and
outgoing event queue for a component (spout or bolt). When
events sent from the upstream vertex are enqueued to the
incoming event queue, the Executor thread processes the
events and sends them to the outgoing event queue. Spouts
receive events from the external system and send them to
the outgoing event queue. If there is no event to process in
the incoming queue, the Executor thread sleeps until another
event arrives.

Flink chains operators in a DAG and creates a DAG of
Tasks, where each Task runs on the long-running runtime
processes, called TaskManagers. A TaskManager can run
multiple Tasks from different queries. In the TaskManager,
each Task is executed by one thread, and the thread processes
the events of the vertex. As with Storm, each Task thread has
an incoming event queue, which sleeps when there is no event
to process in the queue.

2.2.2 Limitations. Creating multiple processes and th-
reads per query causes an excessive number of context switch-
ing among them, which increases the working set size and
leads to frequent cache misses. Thus, the CPU becomes a
bottleneck.

Scaling Up loT Stream Processing

3120" IdéaIThp ._. Meas‘uredThp“
%)
S 80
>
]
= 40
o
£ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140

Number of queries (10°)

Figure 1: Performance evaluation of the Flink-based execution
model

As the number of queries increases in SPSs, the number of
threads or processes also increases. If the number of threads is
large, the number of context switching also increases. In addi-
tion, since each IoT stream query processes a small amount of
data streams, the threads sleep and wake up repeatedly, which
also increases the frequency of context switching. Commonly,
IoT devices generate events at a certain interval (e.g., 1 sec-
ond). After a thread processes an event in a CPU, it waits
until another event is generated. In the meanwhile, another
thread can process the event of a different query in the same
CPU. As each thread handles each query, which has its own
data, such as data streams, codes and internal operator states,
multiple threads that process the events of different queries in
the same CPU will increase the working set size. Eventually,
a large working set will not fit into a CPU cache and lead to a
flurry of cache misses.

To understand this problem, we evaluate how Flink perfor-
mance degrades as the number of queries (threads) increases
in a single machine (a single TaskManager). Storm evidently
supports a smaller number of queries than Flink does because
Storm executes queries in a heavier way than Flink (processes
per query vs threads per query); thus, we choose Flink as a
baseline.

We implement two categories of streaming queries for the
evaluation: Abnormal heart rate detection (AHR) and Point of
Interest recommendation (Pol). AHR query consistently de-
tects abnormal heart rates based on the user’s activity, and Pol
query recommends nearby points of interest according to the
user’s current GPS location. To emulate IoT data streams, we
use two datasets: GeoLife [30] and PAMAP2 [21]. PAMAP2
is a dataset containing user’s activity, motion, and heart rate
data; and GeoLife is a collection of GPS trajectory logs from
people in Beijing. We generate an event per second on aver-
age, following a Poisson process model. Each AHR and Pol
query consumes a data stream generated from PAMAP2 and
GeoLife, respectively. EMQ [7] is used as a message broker
for the reliable large-scale delivery of these events.

We gradually increase the number of AHR and Pol queries
and measure throughput (the number of processed events per
second). The measured throughput should be proportional

APSys ’17, September 2, 2017, Mumbai, India

to the number of queries, since each query processes one
event per second, on average. In all cases of the experiments,
we use a 28-core NUMA machine (2% Intel Xeon E5-2680
2.4GHz, 35M Cache, 8x 16GB RDIMM) to run MIST. Flink
TaskManager runs on the machine, and emulated sources,
message brokers, and result loggers run on separate machines.

Flink was able to handle approximately 4K queries, with
the main bottleneck being the cost to maintain thousands of
network connections. Flink deals with each query separately,
so a large number of network connections are created when
users submit many queries. Maintaining each network con-
nection is expensive; thus it degrades system performance.

To investigate the problems concerning the execution model
(thread-per-query) clearly, we implement a Flink-based execu-
tion model that addresses the network bottleneck by sharing
the network connections among queries while creating a new
thread per operator, based on the Flink execution model. Fig-
ure 1 shows that the Flink-based execution model handles
up to approximately 110K stream queries, before the mea-
sured throughput significantly degrades. This is because the
Flink-based execution model has a CPU bottleneck, caused
by the higher number of cache misses. We present the de-
tailed numbers, such as the number of cache misses and CPU
use compared to the MIST group-aware execution model, in
§ 3.5. In the following sections, we discuss how the MIST
group-aware execution model reduces the number of cache
misses and improves system performance.

3 GROUP-AWARE EXECUTION MODEL

In contrast to Flink, which creates new threads per query
and makes the OS scheduler responsible for scheduling the
event processing, we design a group-aware execution model
that exploits the locality of data and code references while
processing the events of queries in the same group. When
users create groups of queries, queries in the same group can
process the same data stream and have the same code. Our
main idea is to group events of different queries belonging
to a single group and process them consecutively in a single
thread. This approach better exploits the locality of data and
code references within the groups and improve the system
performance, as we can reuse the same data and code residing
in the CPU cache.

3.1 MIST Overview

Before illustrating the group-aware execution model, we give
a brief overview of MIST, which is a new stream process-
ing system designed to process large numbers of IoT stream
queries in a cluster of machines. We realize the group-aware
execution model on MIST and enable MIST to increase the
number of queries that can be processed in a single machine.

APSys ’17, September 2, 2017, Mumbai, India

Query Q17 (Group G7)

Query Q2 (Group G1)

@
G1) G2 G1 G2 G3 G4 G1)| G2
\ A

...... @TZ @

A fixed number of threads
Operator Stage

Source Stage Sink Stage
Figure 2: The architecture overview of the group-aware execu-

tion model in a stream engine. sy, ox, kx, gx, and Ty represents
a source, operator, sink, event queue, and an operator thread.

Overall, MIST consists of three components: the front end,
the driver, and the stream engines.

Front End. The MIST front end enables users to create
and manage queries. It also provides an interface for users
to group their queries by labeling them according to their
purpose. Each query is converted to a DAG and submitted to
the MIST driver.

Driver. When the DAG of a query is submitted from the
MIST front end, the MIST driver receives the DAG and as-
signs it to a stream engine out of the engines available. Each
stream engine is a process that runs on a single node and han-
dles multiple stream queries. To process all of the queries in
the same group by leveraging the group information, the dri-
ver assigns the queries in the same group to the same stream
engine.

Stream Engines. A stream engine is a process that runs on
a single node, and it is in charge of processing multiple IoT
stream queries. It processes the events of queries according
to the defined DAGs. We apply the group-aware execution
engine in the MIST stream engine to increase the number of
IoT stream queries processed in a machine. Next we present
the details of the group-aware execution model.

3.2 Stage and Query Separation

Figure 2 shows the overview of the group-aware execution
model in a MIST stream engine. A MIST stream engine con-
sists of three separate stages: the source stage, operator stage,
and sink stage. The threads of each stage are independent;
hence, by separating the threads for I/O operations (sources
and sinks) and CPU operations (operators), we can use the I/O
and CPU operations effectively [26]. Each stage has a fixed

Taegeon Um et al.

number of threads (can be configured by system administra-
tors) to reduce frequent context switching and cache misses
that can occur in a large number of threads and to realize that
a single thread processes the events of multiple queries in the
same group.

To separate the operation of sources, operators, and sinks,
MIST adds internal event queues to the DAG between a source
and an operator and between an operator and a sink. In Fig-
ure 2, query Q1 has internal operator event queues between
s1 and o1 and between s2 and 02. MIST also adds a sink event
queue between 03 and k1. The source thread receives and
sends events to the operator event queues, the operator thread
processes the events by applying the functions of downstream
operators in depth-first search order, and sends the processed
events to the sink event queues; the sink thread then emits the
events to external systems.

In following sections, we focus on the operator stage be-
cause processing the events of operators is the main bottle-
neck of the system. We explain how MIST assigns groups
and queries to an operator thread and processes events in the
operator stage.

3.3 Group and Query Assignment

To process the events of a group, MIST first assigns a new
group to a thread, and whenever a new query for the group is
created, MIST adds the operator event queue of the query to
the group. As an example of the assignment of operator event
queues, in Figure 2, MIST assigns group G1 to thread T'1 and
allocates the operator event queues of Q1 and Q2 (g1, g2, and
q3) to G1, because queries Q1 and Q2 are included in group
G1. Then, thread T1 will process the incoming events of all
queries within group G1.

Our group assignment policy is to balance the number of
operator event queues in the operator stage. For instance, in
Figure 2, T1 has two assigned groups (G1 and G2) and six
operator event queues; whereas T2 has two assigned groups
(G3 and G4) and five operator event queues. When a new
group and queries are created, MIST will assign the new
group to T2 in order to balance the number of operator event
queues. This assignment policy works well in a situation
where the size of groups (the number of queries) does not
frequently change, and the incoming event rate and required
computations for each query are similar. In § 4, we will further
discuss another assignment policy for other situations.

3.4 Group-Aware Event Processing

The remaining part is about how each operator thread pro-
cesses events. Each operator thread has several assigned
groups because the number of threads is less than the num-
ber of groups in general. At a high level, to schedule the
events of assigned groups in a way that exploits the locality of

Scaling Up loT Stream Processing

Algorithm 1: Event Processing Mechanism

1 Function PROCESSING(activeGroupQueue, pTimeout)

2 while not finished do

// Sleep if the queue is empty

group « activeGroupQueue.take();

opSchedQueue « group.getOpSchedQueue();

startTime « currentTime();

while group.hasEvent() and

elpasedTime(startTime) < pTimeout do
opEventQueue « opSchedQueue.poll();
while opEventQueue.hasEvent() do

10 event « opEventQueue.poll();

1 L processEventInDFS(event);

e ® N R W

data and code references, the operator thread picks an active
group, which has at least one event to be processed, processes
the events of the active group until there is no event to be
processed, and repeats this process.

Algorithm 1 shows this event processing mechanism. A
thread picks an active group from the active group queue (line:
3). For the active group queue, we use a blocking queue in
order not to waste CPU cycles when there is no event to be
processed. The thread sleeps if there is no active group. To
wake up the thread, we create a group dispatcher thread that
adds active groups to the active group queue by iterating the
list of assigned groups to a thread. For example, in Figure 2,
T2 sleeps because it has no active group. When an event
is generated and enqueued to q9, G3 becomes active, and
the group dispatcher will add G3 to the group scheduling
queue of T2. Then, T2 will wake up and process the event.
After selecting a group, the thread selects an active operator
event queue that has at least one event (line: 8). After that, it
processes all of the events from the operator event queue until
it becomes empty. The operator event queue will be added to
the operator scheduling queue again when an event for the
operator event queue is created.

This event scheduling mechanism allows a thread to pro-
cess the events of an operator successively, as well as the
events of operators in the same group consecutively. As
queries in the same group can have the same data stream
and code, MIST can reuse recently referenced data and codes
and reduce cache misses.

With a low probability, operator threads could be occupied
by an active group where events are continuously generated,
which would mean events in other active groups could not
be processed by the threads for a long time. MIST prevents
this situation by preempting the active group when the event
processing time of the group is larger than the preemption
timeout (pTimeout, line 7).

APSys ’17, September 2, 2017, Mumbai, India

$ 400K ‘ 100 £
b CZ3 Max # of queries 180 =
= 300K [Median latency 160 2
%5 200K} 2
. 140 ®
% 100KF 120 .E
S oKk ,/i 0 9

Flink-based MIST group-aware =

Figure 3: Performance of the Flink-based execution model and
MIST group-aware execution model

e (a) (b)

= 16.0 60.0%

4 20 1 £ 40.0%

e il | 2 20.0%

o 4.0f 108 v

3 0.0l — ‘ 0.0%"

5 Flink-based MIST Flink-based MIST

#* group-aware group-aware

Figure 4: (a) shows the number of last-level cache (LLC) misses
while processing 40K queries during 2 minutes and (b) shows
the CPU use while processing 40k queries during 2 minutes in
the Flink-based execution model and MIST group-aware execu-
tion model

3.5 Preliminary Evaluation

We evaluate the performance of the MIST group-aware ex-
ecution model in the same environment used for Flink eval-
uation § 2.2.2. We set the number of threads in the source,
operator, and sink stages to 100, 56 (2x the number of cores),
and 100, respectively. To emulate query groups, we group
100 AHR and Pol queries, i.e., the number of groups was T’?o’
where n is the number of queries.

Figure 3 shows that the MIST group-aware execution model
improves the number of IoT stream queries processed in a
machine up to 350K with 6ms median latency; 3.18X larger
number of queries compared to the Flink-based execution
model. These results demonstrate that our group-aware ex-
ecution model reduces cache misses and improves system
performance. Figure 4(a) shows that the Flink-based execu-
tion model has a 3.19x higher number of last-level cache
(LLC) misses compared to MIST in processing 40K queries
in 2 minutes. The higher number of cache misses leads to in-
efficient CPU use in the Flink-based execution model, which
is illustrated in Figure 4(b). At the same number of queries,
the CPU use of the Flink-based execution model is 30.2%,
whereas that of the MIST group-aware execution model is
13.8%.

APSys ’17, September 2, 2017, Mumbai, India

4 DISCUSSION

We discuss interesting research directions below to more scale
up IoT stream processing in MIST.

Reducing Duplicate Computations. In plenty of IoT st-
ream queries, some queries can generate duplicate compu-
tations and this could be a cause of high CPU use. MIST
can reduce these duplicate operations by merging queries
that have the same computations. Sharing operations among
multiple queries has been explored in the streaming database
field [5, 9, 17, 20, 25, 28, 29], focusing on optimizing com-
putations that have different parameters, such as different
window sizes or different filter predicates. MIST can also use
these techniques to merge queries. However, with billions of
stream queries, finding the queries to merge could be time-
consuming. To solve this challenge, we can also leverage the
group information to identify mergeable queries. By limiting
the search space within the same group, we can identify them
quickly with negligible overhead.

Load Balancing in Group Assignment. Current group as-
signment policy supposes that an operator thread load is pro-
portional to the number of queries. However, load imbalance
can occur if the load is not proportional to the number of
queries: the incoming event rate and amount of computation
of each query are different. The load imbalance can increase
the latency and degrade the system performance; thus, group
assignment should consider the load of threads, which de-
pends on the event rate, amount of computation, etc. As an
example, queuing theory can be used to measure the load of
threads [6]. Then, assigning new groups to the thread that has
the lowest load balances the load among threads.

Group Reassignment. Even when we balance the load of
threads while assigning groups, load imbalance could still
occur over time as we pin a group to a certain thread. For
instance, the number and the event incoming rate of queries
in a group can change over time after the group is assigned to
a thread. A high-level policy to mitigate the load imbalance
among threads is to reassign the groups from overloaded
threads to underloaded threads. To develop the reassignment
policy, we should consider several details, including how to
determine overloaded and underloaded threads, and which
groups should be reassigned. These issues must be addressed
while minimizing the number of groups to be reassigned,
because processing events of groups in different threads is
likely to increase the number of cache misses.

Reducing Memory Use. Some operators have internal stat-
es, such as windows or aggregates. When the size of persist-
ing states for each query becomes large, memory can become
a bottleneck. Unloading (removing) the states of inactive
queries from memory to disk is a feasible solution to solve the
memory bottleneck, because some IoT queries could become
inactive for a long time. For instance, GPS queries that track

Taegeon Um et al.

bicycle location are only active when users are riding bicy-
cles. However, with large numbers of queries, deciding which
queries are inactive is challenging. We can again address
this challenge using the group information. Since queries in
the same group can share data streams, queries that process
the same data streams are likely to become inactive at the
same time, when the data streams become inactive. Hence,
MIST could track whether a group is active or inactive and
(un)load the whole queries in the same group. This approach
can reduce the overhead of tracking each individual query
status.

S RELATED WORK

Stream Processing Systems. The limitations of current
stream processing systems [8, 23, 27] are discussed in § 2.2.2.
Streaming Databases. Streaming databases [1-5] are de-
signed to process data streams. They focus on streaming
queries that process data streams in which the data format is
relational data (e.g., uniform schema). Their target is different
from MIST, which does not limit the data format generated
from various IoT devices. In addition, they do not leverage
the group information and exploit the locality of data and
code references to scale up the number of queries processed
in a machine.

Sensor Networks. Sensor networks aggregate data streams
from geographically distributed sensors. Most sensor network
communities focus on data aggregation in the network to
reduce the communication overhead [16, 18]. In contrast to
them, our group-aware execution model focuses on central-
ized processing of 10T stream queries in the back-end server.
IoT Platforms. There are commercial solutions provid-
ing an integrated stack for developing IoT platforms, such
as Azure IoT Suite [19], AWS Internet of Things [22], or
IFTTT [12]. As these platforms need to serve more and more
stream queries, the MIST group-aware execution model can
be used to scale up stream processing in these systems.

6 CONCLUSION

We propose MIST, a new stream processing system that is
designed to efficiently handle large numbers of IoT stream
queries. To scale up the number of queries that can be pro-
cessed in a machine in MIST, we design a new group-aware
execution model that exploits the locality of data and code ref-
erences in the same group. Our preliminary evaluation shows
that the MIST group-aware execution model improves the
number of IoT stream queries up to 3.18x compared to the
Flink-based execution model. We believe that MIST offers
new, interesting opportunities for research to improve IoT
stream processing.

Scaling Up loT Stream Processing

ACKNOWLEDGEMENTS

We thank anonymous reviewers for their comments. We also
thank Brian Cho, Zhenping Qian, Jooyeon Kim, Wonwook
Song, Hyunmin Ha, and Jangho Seo for their feedback. This
research was supported by Samsung Research Funding Center

of Samsung Electronics under Project Number 0421-20150094.

REFERENCES

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. 2005. The Design of
the Borealis Stream Processing Engine. In CIDR.

Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Chris-

tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and

Stan Zdonik. 2003. Aurora: a new model and architecture for data

stream management. VLDB 12, 2 (2003), 120-139.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith

Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom. 2003.

STREAM: the stanford stream data manager (demonstration descrip-

tion). In ACM SIGMOD.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J

Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel R Madden, Fred Reiss, and Mehul A Shah. 2003. TelegraphCQ:

continuous dataflow processing. In ACM SIGMOD.

[5] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. 2000. Nia-
garaCQ: A scalable continuous query system for internet databases. In
ACM SIGMOD.

[6] Robert Gallager Dimitri Bertsekas. 1992. Data Networks (2nd ed.).
Prentice Hall.

[71 EMQ Enterprise. 2017. EMQ - Erlang MQTT Broker. http://emqtt.io/
docs/v2/index.html. (2017).

[8] Apache Flink. 2017. Apache Flink: Scalable Stream and Batch Data
Processing. https:/flink.apache.org. (2017).

[9] Lukasz Golab, Kumar Gaurav Bijay, and M Tamer Ozsu. 2006. Multi-
query optimization of sliding window aggregates by schedule synchro-
nization. In CIKM.

[10] Mahanth Gowda, Ashutosh Dhekne, Sheng Shen, Romit Roy Choud-
hury, Lei Yang, Suresh Golwalkar, and Alexander Essanian. 2017.
Bringing IoT to Sports Analytics. In NSDI.

[11] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung,
and Ratul Mahajan. 2014. Bolt: Data Management for Connected
Homes.. In NSDI.

[12] IFTTT. 2017. IFTTT. https://ifttt.com/about. (2017).

[13] A.Khanna and R. Anand. 2016. IoT based smart parking system. In
IO0TA.

[14] J. Kreps, N. Narkhede, and J. Rao. 2011. Kafka: A distributed messag-
ing system for log processing. In NetDB.

[15] Nest Labs. 2017. Nest. https://nest.com/. (2017).

[16] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei
Hong. 2002. TAG: A tiny aggregation service for ad-hoc sensor net-
works. In OSDI.

[17] Samuel Madden, Mehul Shah, Joseph M Hellerstein, and Vijayshankar
Raman. 2002. Continuously adaptive continuous queries over streams.
In ACM SIGMOD.

[18] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei
Hong. 2005. TinyDB: an acquisitional query processing system for
sensor networks. ACM TODS 30, 1 (2005), 122—-173.

[19] Microsoft. 2017. Azure IoT Suite. https://www.microsoft.com/en-us/
cloud-platform/internet-of-things-azure-iot-suite. (2017).

[2

—

3

—

[4

—

APSys ’17, September 2, 2017, Mumbai, India

[20] KVM Naidu, Rajeev Rastogi, Scott Satkin, and Anand Srinivasan.
2011. Memory-constrained aggregate computation over data streams.
In ICDE.

[21] Attila Reiss and Didier Stricker. 2012. Creating and benchmarking a
new dataset for physical activity monitoring. In ACM PETRA.

[22] Amazon Web Services. 2017. AWS Internet of Things. https://aws.
amazon.com/iot/?nc1=h_ls. (2017).

[23] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In ACM
SIGMOD.

[24] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer
Chandra, Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and
Sean Stratman. 2017. FarmBeats: An IoT Platform for Data-Driven
Agriculture. In NSDI.

[25] Song Wang, Elke Rundensteiner, Samrat Ganguly, and Sudeept Bhatna-
gar. 2006. State-slice: New paradigm of multi-query optimization of
window-based stream queries. In VLDB.

[26] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: an architec-
ture for well-conditioned, scalable internet services. In SIGOPS.

[27] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized streams: Fault-tolerant
streaming computation at scale. In SOSP.

[28] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava. 2005.
Multiple aggregations over data streams. In ACM SIGMOD.

[29] Rui Zhang, Nick Koudas, Beng Chin Ooi, Divesh Srivastava, and Pu
Zhou. 2010. Streaming multiple aggregations using phantoms. VLDB
19, 4 (2010), 557-583.

[30] YuZheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative
Social Networking Service among User, Location and Trajectory. /EEE
Data Eng. Bull. 33, 2 (2010), 32-39.

http://emqtt.io/docs/v2/index.html
http://emqtt.io/docs/v2/index.html
https://flink.apache.org
https://ifttt.com/about
https://nest.com/
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://aws.amazon.com/iot/?nc1=h_ls
https://aws.amazon.com/iot/?nc1=h_ls

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Directed Acyclic Graph
	2.2 Execution Model and Limitations

	3 Group-Aware Execution Model
	3.1 MIST Overview
	3.2 Stage and Query Separation
	3.3 Group and Query Assignment
	3.4 Group-Aware Event Processing
	3.5 Preliminary Evaluation

	4 Discussion
	5 Related Work
	6 Conclusion
	References

