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ABSTRACT
Recursive neural networks have widely been used by researchers
to handle applications with recursively or hierarchically structured
data. However, embedded control flow deep learning frameworks
such as TensorFlow, Theano, Caffe2, and MXNet fail to efficiently
represent and execute such neural networks, due to lack of support
for recursion. In this paper, we add recursion to the programming
model of existing frameworks by complementing their design with
recursive execution of dataflow graphs as well as additional APIs
for recursive definitions. Unlike iterative implementations, which
can only understand the topological index of each node in recursive
data structures, our recursive implementation is able to exploit
the recursive relationships between nodes for efficient execution
based on parallel computation. We present an implementation on
TensorFlow and evaluation results with various recursive neural
network models, showing that our recursive implementation not
only conveys the recursive nature of recursive neural networks
better than other implementations, but also uses given resources
more effectively to reduce training and inference time.
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1 INTRODUCTION
Recursive neural networks have widely been used by researchers
to handle applications with recursively or hierarchically structured
data, such as natural language processing [3, 25, 27] and scene
parsing [13, 22, 23, 25].

In order to implement such models, embedded control flow deep
learning frameworks (in short, embedded control flow frameworks),
such as TensorFlow [1], Theano [30], Caffe2 [6], and MXNet [4],
embed control flows within dataflow graphs, i.e., the control flow
is represented as a type of operation of the dataflow graph, which
can trigger conditional execution or iterative computation. How-
ever, the programming model proposed by such frameworks fails
to efficiently represent and execute neural networks with recursive
structures. The designs of these frameworks do not consider re-
cursive models and instead urge users to either write their models
with iterative constructs [29] or completely unroll models without
exploiting control flow at all [18, 28]. Meanwhile, non-embedded
control flow deep learning frameworks (in short, non-embedded con-
trol flow frameworks) such as PyTorch [20] or DyNet [19] allow
users to define control flows from the client-side, creating new
computation graphs for all possible control flow paths of a model.
This approach trades performance for programmability, losing op-
timization opportunities because each graph is usually executed
only once.

An important example of recursive neural networks is the Tree-
LSTM [27] model, a tree-shaped network with recursively definable
nodes, demanding complicated execution mechanisms. In existing
frameworks, the TreeLSTM network is handled by either statically
unrolling the full network graph beforehand [19, 20], or using a sin-
gle LSTM cell to iteratively compute all intermediate nodes [1, 30].
For the former case, it is difficult to process multiple data instances
together because the tree structure differs for each instance. For
the latter case, the iterative execution is inherently sequential and
thus is incapable of computing multiple nodes in parallel.

In this paper, we introduce recursive definitions into the pro-
gramming model of existing embedded control flow frameworks [1,
4, 6, 30], adding first-class support for recursion. By allowing users
to directly express recursive definitions in application code with
enhanced programmability, models with recursive data structures
such as trees or graphs can be written without requiring users to
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use a separate complex API to express the control flow [15]. Also,
optimization opportunities can be exploited to boost performance,
such as concurrently executing child nodes in tree structures that
have no dependencies between each other.

We make recursive definitions possible by introducing a spe-
cial graph operation, InvokeOp, that abstracts the execution of a
SubGraph. Users can incorporate recursion in models by invoking
a SubGraphwithin the InvokeOp that abstracts the same SubGraph.
The framework handles the execution of an InvokeOp as the initi-
ation of a new SubGraph containing a bundle of inner operations,
which are treated the same as the original running operations.

We implemented support for recursively defined dataflow graphs
on TensorFlow [1], a widely used deep learning (DL) framework.
To show the expressive power and the performance of recursive
graphs, we implemented three applications using our framework:
sentiment analysis with the TreeRNN [25], RNTN [26], and Tree-
LSTM [27] models. For every model, we succeeded in capturing
the recursive semantics of the computation graph, and achieved
competitive performance compared to other state-of-the-art deep
learning frameworks such as TensorFlow [1] and PyTorch [20].

The rest of the paper is organized as follows. Section 2 explains
the limitations of existing embedded control flow frameworks re-
garding recursive models, and Section 3 provides a high-level API
for efficiently representing such recursive models. Section 4 de-
scribes the design aspects of our framework, and Section 5 presents
the implementation details. Section 6 presents evaluation results on
various applications. Section 7 covers related work and Section 8
concludes.

2 MOTIVATION
2.1 Embedded Control Flow Frameworks and

Their Limitations
Modern deep learning frameworks use directed acyclic graphs
(DAGs) to represent mathematical computations of deep learning
applications and the execution order of such computations. The
vertices of graphs represent the mathematical operations, while
the edges represent the dependencies between two operations. An
edge from operation a to operation b implies that the output of a is
fed into b as the input value. As the execution order between any
two operations in the computation graph is statically determined,
it is a non-trivial task to represent dynamic control flow within
computations, such as conditionally executing only a part of the
graph, or jumping to a nonadjacent operation.

Based on how to handle dynamic control flow, we can divide deep
learning frameworks into two categories: embedded control flow
frameworks and non-embedded control flow frameworks. Embedded
control flow frameworks such as TensorFlow [1] and Theano [30]
include control flow concepts inside the computation graph. They
define special kinds of control flow operations to embed the control
flow within the graph. This way, a single computation graph is
able to express multiple control flow paths. Since these frameworks
can build a single graph and execute it repeatedly, aggressive per-
formance optimization can be done while hiding the optimization
overhead.

On the other hand, non-embedded control flow frameworks in-
cluding PyTorch [20], DyNet [19], and Chainer [31] do not represent

the control flow inside the computation graph. Instead, they create
a new static computation graph for every activated control flow.
This approach enables fast prototyping and easy development of
various deep neural networks. However, this approach leaves little
room to optimize the performance of computation graph execution,
because each graph gets executed only once.

Embedded control flow frameworks. In embedded control
flow frameworks, graph vertices represent not only arithmetic oper-
ations (e.g., Add or MatMul) and data transformations (e.g., Concat),
but also data-dependent control flow mechanisms. Conditional ex-
pressions are often made available by many embedded control flow
frameworks. A predicate is expected as the first input argument, and
two other operation groups as the true and false inputs. Based
on the predicate value, only one of the two operation groups are ex-
ecuted and passed to the output operation. Another useful control
flow construct in existing deep learning frameworks is the iterative
loop construct, namely the while_loop operation in TensorFlow
and the Scan operator in Theano. This kind of API enables adding
a group of operations, referred to as a loop body, to be executed
multiple times iteratively. Conditional expressions are usually used
with loop constructs to denote the termination condition of the
loop body.

By planting dynamic control flow inside the computation graph
and thus decoupling the client-side code execution from compu-
tation graph execution, frameworks can exploit parallelism while
executing jobs by handling mutually independent operations in a
concurrent manner, and can also exploit graph optimization tech-
niques for faster execution that would otherwise be impossible for
non-embedded control flow frameworks. This paper will focus on
embedded control flow frameworks, building up on the provided
optimizations to produce maximum performance.

Limitations of embedded control flow frameworks. The
computation graphs of embedded control flow frameworks do
not fully cover every possible control flow construct, however.
Designing recursive neural networks efficiently using embedded
control flow of iterative loop constructs is difficult. Not only is it
unclear how to parallelize independent operations with iterative
loops, recursion and iteration are fundamentally different and thus
converting one into another involves a nontrivial conversion pro-
cess [7, 8, 14]. The following subsection shows an example demon-
strating the difficulties of designing recursive neural networks with
just loop constructs.

2.2 Example: TreeLSTM
The long short-term memory [9] (LSTM) cell is a block of functions
that is well-known for its ability to “remember” past computations
of a neural network, and is often used for networks that process
data of sequential characteristics such as text data with sentence
structures.

TreeLSTM [27] is a widely used recursive neural network based
on LSTMs that is known to perform well for applications with
tree-shaped data instances such as parse trees for natural language
processing and hierarchical scene parsing [25]. In an ordinary lin-
ear recursive neural network, LSTM cells are placed sequentially
regardless of the input data structure. On the other hand, in the
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TreeLSTM model, LSTM cells are combined to form a tree, mim-
icking the shape of the input data tree. Sentiment analysis is often
used as an application of the TreeLSTM. For example, with movie
review sentences and the corresponding ratings as training input
data and labels, the TreeLSTM network can be trained to predict
the sentiment of each movie review sentence.

There are two approaches to implement this TreeLSTM network
with current deep learning frameworks, both having its own limi-
tations.

The first approach is unrolling the whole tree structure to the
computation graph, so that LSTM cells are duplicated for each
tree node. To train multiple trees with this approach, however, a
new graph must be created for all input training instances. Not
only does this result in an excessive amount of graph objects and
significant construction overhead, the effect of compile-time graph
optimization is near zero as all graphs are used only once.

The second approach is using iterative control flow operations
provided by frameworks. Figure 1 shows pseudocode of an iterative
implementation of the TreeLSTM model. In this implementation, a
single LSTM cell can be used multiple times for multiple input data
instances. After the leaf nodes are processed sequentially in Line 14,
the internal nodes with their dependencies resolved get processed
in Line 15. In order for this approach to work, the input tree must be
preprocessed so that its nodes are assignedwith topologically sorted
indices, i.e., executing the tree nodes in an iterative manner does not
violate the computational dependencies. Since the recursive nature
of the tree structure cannot be directly represented by iteration, it
is difficult to write and understand this code.

The process of topologically sorting the tree nodes loses the
parent-child node relationships of the tree, and thus the iterative
implementation can only view the tree nodes as a linearly ordered
list. A recursive formulation, on the other hand, would be able to
utilize the information on parent-child relationships to concurrently
execute nodes, and is inherently more suitable for representing
recursive neural networks, preserving their recursive nature.

2.3 Recursion in Embedded Control Flow
Frameworks

The drawbacks of the unrolling method and the iterative method
suggest the need for a more effective and intuitive solution to
implement TreeLSTMs, and recursive neural networks in general.
We propose that recursively defining and executing recursive neural
networks is a simple yet powerful approach.

Recursive execution of computation graphs has many similar-
ities with recursive invocation of functions in general program-
ming languages. Recursive function invocation in programming
languages is supported by allowing a function to call itself inside
the function body. This is usually more complicated than executing
non-recursive functions, since when parsing the source code of a
recursive function, the recursive function call must be processed
before the parsing of the function gets finished.

Inspired by the concept of functions and function invocations,
we propose to design similar ideas in embedded control flow frame-
works to support recursive execution. First, a programming inter-
face for defining a subset of the computation graph that will be
executed recursively is required. Then, an invocation operation

1 states = array()

2
3 def compute_leaf(idx):

4 curr_state = lstm(embed(tree.leaves[idx]))

5 states.insert(idx, curr_state)

6
7 def compute_internal(idx):

8 left_idx , right_idx = tree.children[idx]

9 left_state = states.get(left_idx)

10 right_state = states.get(right_idx)

11 curr_state = lstm(left_state , right_state)

12 states.insert(idx, curr_state)

13
14 for_loop(range(num_leaves), compute_leaf)

15 for_loop(range(num_internals), compute_internal)

16
17 root_state = states[root_idx]

Figure 1: Iterative implementation of the TreeLSTM model
in pseudocode.

inside the graph subset is also needed, to trigger the recursive ex-
ecution of the graph subset. No modern embedded control flow
framework supports these functionalities and, at the same time, is
able to train a recursive neural network, to the best of our knowl-
edge.

Our observations above suggest that an implementation of re-
cursion, for embedded control flow frameworks, must satisfy two
conditions. First, recursion must be expressible as part of a valid
computation graph. Despite the fact that recursion implies the us-
age of a call stack of arbitrary length, the graph representation
of recursion must be finite and executable by the framework. The
graph representation of recursion corresponds to the recursive
function definition; the definition simply denotes what computa-
tion is involved and how the recursion occurs, while not actually
running the function. Moreover, this representation must be usable
together with other non-recursive parts of the computation graph
(Section 3.1).

Second, an operation included in a recursive computation graph
must be able to trigger the surrounding computation graph re-
cursively. The operation triggering the recursive graph execution
corresponds to the function invocation, which can further unfold the
computation until the recursion termination condition is satisfied
(Section 3.2).

3 PROGRAMMING MODEL
In this section, we describe our modifications to the programming
model of existing embedded control flow frameworks, as well as
how they are translated into dataflow graph components.

3.1 Unit of Recursion: SubGraph
It is infeasible to implement the dynamism and recurrences of
recursive computations using the static components of dataflow
graphs provided by existing embedded control flow frameworks.
In response to this shortcoming, we first propose an abstraction,
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SubGraph, that represents basic recursive blocks and, at the same
time, can be used in conjunction with existing operations to create
a dataflow graph with recursive computations.

SubGraphs are created by grouping operations of a given compu-
tation graph that will be executed recursively. SubGraphs represent
fractions of a dataflow graph. Executing a SubGraph refers to exe-
cuting the operations that belong to that SubGraph. The inputs and
outputs of operations that are connected to outer operations (op-
erations that reside outside of the current SubGraph) are assigned
as inputs and outputs of the SubGraph itself. During execution,
the inputs of a SubGraph are passed to the corresponding inner
operations, while operation outputs that must be shipped out to
outer operations are passed as SubGraph outputs. A SubGraph can
be regarded as a function in general programming languages.

Additionally, we allow SubGraphs to invoke other SubGraphs.
A SubGraph invocation within an outer SubGraph is connected
to the other inner operations to form an inner dataflow graph,
just as the outer SubGraph is connected to outer operations. A
SubGraph invocation in a SubGraph simply implies that there is
yet another group of operations to be executed at that particular
graph position. Coming back to the function analogy, placing a
SubGraph invocation within a SubGraph is identical to calling a
function within another function.

More importantly, a SubGraphmay recursively invoke itself. This
aspect makes possible the definition of a recursive computation;
we define a recursive block as a SubGraph and insert a invocation
to itself in the same SubGraph.

Figure 2 shows the recursive implementation of the TreeLSTM
model, with details omitted for brevity. After defining a SubGraph
for the TreeLSTM model in Line 2, we reuse the definition in Lines
10-11 to complete the recursive tree structure of the model. Notice
how a conditional expression is used (if in Line 14) to separate the
base case from the recursive case. Comparing with Figure 1, this
recursive version follows the definition of the TreeLSTM model
more clearly; the recursive nature of the tree structure is explicitly
represented in this implementation.

3.2 Recursion in Dataflow Graphs: InvokeOp
While SubGraphs provide a convenient way to define recursive
computations, the framework is still left with the task of actu-
ally executing the operations gathered as SubGraphs. However, as
SubGraph operations are expected to be executed in a recursive
fashion, an additional mechanism for “re-executing” the opera-
tions of SubGraphs repeatedly (until some termination condition is
met) is required. To this end, we introduce a new operation named
InvokeOp.

An InvokeOp is an operation that takes a set of tensors as input,
runs an associated SubGraph (i.e., executes the inner operations of
the SubGraph) with the provided inputs, and returns the resulting
tensors as output. InvokeOps are execution objects instantiated
from SubGraph invocations; as SubGraphs are semantically close to
function definitions, InvokeOps can be considered as function calls
to the functions specified by SubGraphs. As such, it is possible for
a single SubGraph to be associated with more than one InvokeOp.

Despite the special property of having an associated SubGraph,
an InvokeOp is fundamentally the same as other operations such

1 # TreeLSTM: index(int32) −> hidden_state(Tensor)

2 with SubGraph() as TreeLSTM:

3 idx = TreeLSTM.input(int32)

4
5 def compute_leaf_node():

6 return LSTM(embed(tree.leaves[idx]))

7
8 def compute_internal_node():

9 left_idx , right_idx = tree.children[idx]

10 left_state = TreeLSTM(left_idx)

11 right_state = TreeLSTM(right_idx)

12 return LSTM(left_state , right_state)

13
14 TreeLSTM.output(if(is_leaf_node(idx),

15 compute_leaf_node ,

16 compute_internal_node))

17
18 root_state = TreeLSTM(root_idx)

Figure 2: Recursive implementation of the TreeLSTMmodel
with SubGraph definitions. After declaring the start of a
SubGraph in Line 2, we indicate the inputs of the SubGraph
in Line 3. The body of the SubGraph is defined in Lines 5-
16, while recursive calls are made on Lines 10-11. Note that
SubGraph outputs must be given as in Lines 14-16. The com-
pleted SubGraph definition can now be used in Line 18.

as Add or MatMul, and is generally treated as an ordinary opera-
tion. The difference with other operations comes from the operation
kernel implementation; instead of performing a mathematical calcu-
lation, an InvokeOp abstracts the execution of an entire SubGraph.
This difference also affects a process called automatic differentiation,
a core functionality provided by modern deep learning frameworks
for training models. Instead of calculating mathematical derivates
of some numerical function like other operations, the framework
must take into account the associated SubGraph of an InvokeOp.
We will discuss this further in Section 4.2.2.

3.3 TreeLSTM with SubGraphs & InvokeOps
Figure 3 portrays an example on how InvokeOps are used to repre-
sent the TreeLSTM (Section 2.2) model with recursion. A completely
unrolled depiction of the model for a full binary tree is shown in
Figures 3(a) and 3(b). It is not hard to observe that the model can be
expressed using recursion: the embed operation and the LSTM cell
at the leaves form the base case (Figure 3(a)), while the two-input
LSTM cell at the intermediate notes corresponds to the recursive
case (Figure 3(b)).

Merging the base case and the recursive case into a SubGraph
with a conditional branch (if), we now have a concise represen-
tation of the TreeLSTM model, as shown in Figure 3(c). Note that
the condensed SubGraph is able to represent TreeLSTMs of arbi-
trary height or shape, and not just a single particular structure.
InvokeOps are inserted at all inner recursive call points to complete
the computation graph.
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Figure 3: An illustration of how an unrolled computation
graph of the TreeLSTM model (a, b) can be transformed
into a recursive graph with InvokeOps (c). The base case, de-
picted in the boxes of (a), and the recursive case, indicated
by the boxes in (b), can be combined to succinctly describe
the model as a recursive SubGraph as shown in (c). InvokeOps
have been added at the appropriate places tomark the points
where a recursive function call to the SubGraphmust occur.

4 SYSTEM DESIGN
In this section, we discuss various system design aspects for sup-
porting the recursive programming model of the previous section.

Operation

InvokeOp

Master

Graph Parser

Execution

Thread Pool

Waiting

Operations

Ready

Queue

Worker

Client

(1)

(2)

(3)

(4)

(2)

SubGraph

Figure 4: The execution model of embedded control flow
frameworks with InvokeOps. (1) After the client initiates the
job with a dataflow graph, (2) the master decomposes the
graph into operations and places them into either the ready
queue or the waiting line of the worker, depending on the
number of unresolved inputs. (3) Operations are dequeued
from the queue by idle execution threads, while new oper-
ations are enqueued when input dependencies are resolved.
(4) When an InvokeOp gets executed, its associated SubGraph
is passed to and processed by the master, similar to step (1).
Only one worker is shown for the sake of clarity.

Our design complements existing embedded control flow frame-
works with additional APIs for declaring recursive graphs and core
changes for executing such recursive graphs. Models declared using
the SubGraph API from Section 3 are transformed into a dataflow
graph containing InvokeOps. In turn, the framework core engine
runs the resulting graph with the same mechanism used to run
non-recursive graphs, accessing additional graph and value cache
structures when dealing with InvokeOps. The design does not in-
volve any implementation details of a particular framework, and
can be applied to any DL framework that incorporates control flows
in computation graphs.

4.1 Graph Execution
4.1.1 Background: Execution Model of Existing Frameworks. The

execution model of embedded control flow frameworks can be
characterized by three components: the client who builds and sub-
mits dataflow graphs to the framework, the master which parses
the given graphs and schedules the execution of operations, and
one or more workers that carry out the actual computation of the
operations. The master coordinates the execution of operations
on the workers, running operations in an order that respects the
inter-operation dependencies.

Steps (1)-(3) of Figure 4 displays an illustration of the execu-
tion model, with only one worker shown for simplicity. When the
master first analyzes the input dataflow graph, operations that re-
quire no inputs are enqueued directly into the ready queue of the
worker, whereas operations that need at least one input are put on
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standby. Next, execution threads of the worker’s execution thread
pool grab operations from the operation queue and perform the
computation for those operations in parallel. When an execution
thread finishes running an operation, the master checks the waiting
operations that have a dependency on the completed operation, and
enqueues operations whose dependencies have all been resolved to
the ready queue. This process is repeated until all operations have
been processed.

4.1.2 Recursive Execution. The execution mechanism for exe-
cuting a recursively defined dataflow graph is no different from the
mechanism for executing non-recursive graphs. This is possible
because the execution of an InvokeOp mimics the initiation of a
new dataflow graph, with the exception of reusing the same master
scheduler as well as the same worker ready queues, as illustrated
in step (4) of Figure 4. When an InvokeOp becomes executable and
is dequeued by an execution thread, the graph associated with the
InvokeOp is processed by the master, similar to how a graph sub-
mitted by the client is parsed by the master. Operations that are
immediately ready to be run are enqueued into the ready queue,
behind the existing operations. Likewise, operations that have at
least one unresolved input dependency are added to the waiting
list, together with other previous standby operations.

This design allows recursive dataflow graphs to be processed
on existing embedded control flow frameworks without drastic
changes. Recursive graphs can enjoy graph optimizations supplied
by such frameworks and achieve good performance while provid-
ing intuitive, recursive APIs at the same time. In fact, from the
framework’s point of view, a recursive graph is the more general
representation, while non-recursive graphs are simply special cases
which have no recursive SubGraphs and InvokeOps.

It is also worth noting that performing priority scheduling of
operations instead of simple FIFO scheduling may possibly yield
significant effects on the execution time of recursive computation
graphs, depending on the inter-operation dependencies of the given
recursive model. For example, if the model contains a SubGraph
whose inner operation must be processed in order for many outer
operations to be enqueued into the ready queue, then a scheduling
decision of processing inner operations before others would lead
to a shorter execution time overall. Although this is an interesting
problem, it is usually not an issue for servers with many parallel
computation threads to spare and thus we leave this as future work.

Graph execution stack. When a function is invoked in pro-
gramming languages, the language runtime maintains a call stack
to record the call history and relevant information. This enables
the program to correctly return from the callee function to the cor-
responding caller function, and also provides helpful information
to programmers such as backtrace information when an exception
occurs while executing the function. A similar process of keep-
ing track of the SubGraph invocation history is required for the
recursive graph execution engine. However, the caller-callee re-
lationship of InvokeOps cannot be managed with a linear stack,
because an InvokeOp can branch out into multiple child InvokeOps
in parallel. Rather, the relationship is maintained as a tree, where
each InvokeOp holds a pointer to its parent InvokeOp (i.e., return
location).

a

b

c

Feedforward Backpropagation

c*

dE / dc

op1

op2

op3

op2-grad

op1-grad

op3-grad

losslabel

dE / db

dE / daa

b

(a)

Feedforward Backpropagation

op1

op2

op3

op2-grad

op1-grad

op3-grad

InvokeOp InvokeOp

(b)

Figure 5: Backpropagation of dataflowgraphswith andwith-
out InvokeOps. (a) A simple linear feedforward network is
shown on the left, while the backpropagation side of the
same network is shown on the right. All gradient operations
receive previous gradient values from its gradient predeces-
sor as well as the original feedforward value from the feed-
forward network. (b) An InvokeOp and its gradient operation
for backpropagation are shown on the left and right, respec-
tively. Notice how (a) and (b) are structurally very similar,
except for the enclosing InvokeOps.

4.2 Graph Backpropagation
4.2.1 Background: Automatic Differentiation. Neural networks

are normally trained via the backpropagation algorithm [21]. Back-
propagation calculates the errors of all operation output values, by
first comparing the final outputs of a neural network with expected
ground-truth values1 (labels) to compute output errors, and then
propagating the output errors all the way back up to the input ac-
cording to the chain rule. The calculated errors – often referred to as
gradients – are used to update model parameters so that operation
outputs are pushed towards the expected values.

Backpropagation of a simple linear network is shown in Fig-
ure 5(a). Starting from operation op1, all forward operations op1,
op2, and op3 are computed in succession to produce values a, b,

1Even for unsupervised learning and reinforcement learning tasks in which there
is no explicit ground-truth value, the backpropagation algorithm is still applicable if a
well-defined loss function exists.
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and c, respectively. The final output c is checked with the expected
value c* to produce the loss value E, as well as the gradient of E
with respect to c, denoted as dE/dc. Next, the other gradients are
generated one by one, this time through the backpropagation line
of operations, op3-grad, op2-grad, and op1-grad.

Note that in order to calculate a certain gradient, both the pre-
vious gradient and the corresponding forward value are required.
For instance, the gradient dE/db is computed with the previous
gradient dE/dc and the forward value b (op3-grad). Likewise, dE/db
and a are used to compute dE/da (op2-grad). This results in a final
dataflow graph where a forward operation shares its inputs with
its backpropagation equivalent (e.g. op2 and op2-grad both take a
as input). As a precaution to prevent values from being invalidated
(released from memory) before being consumed by all dependent
operations, DL frameworks always keep all operation outputs as
valid data until that particular iteration terminates.2

Automatic differentiation. Deep learning frameworks relieve
users from the burden of manually inserting backpropagation op-
erations, with the help of a process called automatic differentiation.
In the case of embedded control flow frameworks, after a user
submits a feedforward neural network to the framework, the frame-
work automatically adds all operations required for computing
gradients to the given dataflow graph. Maintaining a catalogue of
predefined gradient operations, the framework backtracks along
the feedforward path and adds the corresponding gradient for each
and every feedforward operation. The resulting computation graph
can then be processed by the framework for execution. As setting
up the backpropagation path is usually much more tedious than
defining the forward path, the automatic differentiation process is
very helpful for users and currently supported by all deep learning
frameworks.

4.2.2 Recursive Backpropagation. Backpropagation of a recur-
sive dataflow graph is similar to backpropagation of a non-recursive
dataflow graph. The only nontrivial issue is how to define and
calculate gradients for InvokeOps. As the feedforward output of
an InvokeOp is the execution output of its associated SubGraph,
naturally the gradient of an InvokeOp is also generated from the
gradients of the associated SubGraph.

During automatic differentiation, we inspect the SubGraphs as-
sociated with InvokeOps and perform automatic differentiation
on them as well. For each SubGraph, we collect the gradient op-
erations that were inserted by automatic differentiation. At this
point, it is possible to simply add the inserted gradient operations
to the backpropagation path of the computation graph. However,
in case the SubGraph was used for recursion, the gradients for the
inner recursive computations would not be generated and thus
backpropagation would be returning incorrect results.

Instead, we wrap each set of gradient operations from SubGraphs
with yet another SubGraph. If a feedforward SubGraph contains a
recursive invocation to itself, then its corresponding backpropaga-
tion SubGraph will also hold a recursive invocation, at the same
position. Later, InvokeOps are inserted at SubGraph invocation

2Technically, we could recompute the forward operation values during backprop-
agation instead of retaining them to save memory. However, this incurs a significant
increase in training time and is generally not preferred.

points for both the feedforward SubGraph and the backpropagation
SubGraph to complete the computation graph.

Figure 5(b) illustrates how a gradient operation of an InvokeOp
is formed. The associated SubGraph is shown in the inner side of
the feedforward InvokeOp, while the corresponding gradient op-
erations of the SubGraph are shown inside the backpropagation
InvokeOp. Carrying over operation outputs from the feedforward
phase to the backpropagation phase is done by connecting the out-
puts and inputs of the relevant operations, same as in Section 4.2.1.

5 IMPLEMENTATION
We implemented our framework atop TensorFlow [1] 1.3.0. Frame-
work changes, including the kernel implementation of InvokeOp
as well as internal data structures, were done in the C++ core, while
client-side APIs for recursive definitions are exposed in Python.
Here, we describe several implementation issues of our framework.

Forward declaration. In embedded control flow frameworks,
all operations must have well-defined inputs and outputs before
they are used (comparable to function signatures in programming
languages). InvokeOps are not exceptions; the framework does not
allow the creation of a recursive InvokeOp unless the operation
definition for the recursive call is specified beforehand. This rule can
be bypassed by using forward declarations for InvokeOps that are
recursively defined; when a SubGraph is defined, we first predeclare
an empty InvokeOp that has the same signature as the SubGraph,
and later “register” the SubGraph definition to the empty InvokeOp.
Note that this procedure is automatically done by the framework,
and is not exposed to users. Gradients for backpropagation are
defined in a similar manner, with the operation declaration coming
before the actual definition.

Backpropagation cache implementation. As described in
Section 4.2, operation output values from the feedforward phase
must be retained until backpropagation and be fed into the cor-
responding gradient operations. For non-recursive computation
graphs, embedded control flow frameworks would accomplish this
simply by holding a feedforward value entry for each required
operation and later passing the values to the appropriate gradient
operations. Unfortunately, for recursive graphs, an operation within
a SubGraphmay be called more than one time across multiple recur-
sions. Multiple output values generated during multiple executions
must all be passed to the corresponding gradient operation, without
losing their topological position information.

We resolve this issue by maintaining a concurrent hash table
for storing and fetching operation output values of SubGraphs.
Figure 6 describes the whole procedure of passing multiple feed-
forward output values from InvokeOps. A hash table is externally
generated and managed per SubGraph, and a unique hash entry key
is used to distinguish table entries. During the feedforward phase,
we store all output values of InvokeOp instances that come from
the SubGraph in the table. An InvokeOp’s key is defined by combin-
ing the InvokeOp’s topological position within the SubGraph with
the key of the parent InvokeOp, guaranteeing uniqueness. By using
a concurrent hash table, multiple instances of the same operation
in the graph can concurrently access and update the hash table.

Next, during backpropagation, we perform a hash table lookup
for each gradient operation of the InvokeOp instances and feed the
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Figure 6: Concurrent hash table being used between multi-
ple forward and backward executions of the same operation
(InvokeOp).

stored value as input. This enables feedforward output values to
be retained and correctly retrieved for backpropagation. While the
concurrent insert operations may incur minor overhead, the lookup
operations are thread-safe and are negligible. Is it notable that using
a simple queue or stack to store activation values is inadequate,
as the order of enqueue and dequeue operations or push and pop
operations is not deterministic and thus output values may be
directed to the wrong gradient operation.

Outer reference. It is common for a recursive SubGraph to not
refer to the external input values explicitly, but rather implicitly.
For instance, a static value that is required for all levels of recursion
of a SubGraph should not be included as an input of the SubGraph,
as the value does not change anyway. Nonetheless, the TensorFlow
framework regards a SubGraph and the outer graph as two separate
graphs and is unable to understand the identities of such implicit
external values unless they are specified as actual operation inputs.
Therefore, when a SubGraph is created, we analyze the operations
to check whether there are any external inputs that have not already
been specified as the SubGraph’s inputs and add them to the input
list.

Implementation on other frameworks. Recursively defined
SubGraphs and InvokeOps can be implemented on not only Tensor-
Flow but any other embedded control flow DL frameworks as well,
with the computation graph and the operations as its elements. A
SubGraph can be provided as an abstraction that is similar to the
framework’s original graph structure but contains only a subset
of all operations to mark a recursion block. An InvokeOp can be
implemented as a new kind of user-defined operation type, which
recursively executes a SubGraph.

For instance, Caffe2 [6] uses a NetDef protocol buffer as its com-
putation graph, and allows feeding NetDefs as inputs to operators.
By extending NetDefs to recursively represent subgroups of op-
erators, we can create a Caffe2 version of InvokeOp that receives
such subgroups as inputs and executes them. Theano [30] provides
the Scan operator which abstracts the execution of a loop in a
single operator. Although the Scan operator is usually used to ex-
press iterative control flow, the concept of maintaining a separate
graph isolated from the main computation graph fits well with
SubGraphs and is a good starting point for implementing recursive
computations.

6 EVALUATION
We evaluate our framework while focusing on the performance
benefits of the recursive nature of the framework, mostly made
possible by exploitation of parallelism in recursive neural networks.

6.1 Experimental Setup
Applications.We implemented a variety of neural networkmodels
from the recursive neural network family, namely the aforemen-
tioned TreeLSTM [27] model as well as the TreeRNN [25] and the
RNTN [26] model. All models were trained and tested to perform
sentiment analysis on the Large Movie Review [16] dataset, where
data instances are sentences in the form of binary parse trees. For
this dataset, we used a pre-trained network (for each model) to label
all nodes. For all models, we used the same hyperparameters as the
ones suggested in the original papers. We also considered smaller
batch sizes to investigate the performance trends of our framework
without mixing in additional performance gains obtainable from
batching instances.

Frameworks. Along with our implementation of recursive data-
flow graphs (built on TensorFlow 1.3.0), we also implemented neural
networks on other frameworks, including TensorFlow [1] (TF 1.3.0)
without recursive graphs, which allows an iterativeway of program-
ming, and PyTorch [20] (PTH 0.3.1), which only supports the static
unrolling technique. Since native TensorFlow does not support re-
cursive definitions, we used TensorFlow’s control flow operators to
train the neural networks in an iterative fashion, as shown in Sec-
tion 2. For PyTorch, we dynamically create a new graph structure
for each sentence. Although implementing the static unrolling tech-
nique on TensorFlow is possible, the graph generation overhead
tends to be very large; instead, we use PyTorch for the unrolling
technique, which incurs negligible graph construction overhead.

Hardware specification. All numbers reported in this paper
were retrieved from experiment results on a single machine of two
18-core Intel Xeon E5-2695 @ 2.10 GHz processors with 256GB
RAM, unless otherwise specified. We also used an NVIDIA Titan
X GPU for certain models. Unlike other common neural networks
such as convolutional models, the unstructured input data of recur-
sive neural networks makes it difficult to exploit the full computa-
tional power of GPUs. Thus, we use GPUs only if they introduce
performance gain compared to CPU-only execution. Our imple-
mentation and TensorFlow showed greater performance on CPUs,
while PyTorch performed better on a GPU.

6.2 Throughput and Convergence Time
We start our analysis by measuring the training and inference
throughputs with the recursive, iterative, and static unrolling im-
plementations.

Training throughput. Figure 7 shows the throughput of train-
ing the TreeRNN, RNTN, and TreeLSTM models using the Large
Movie Review dataset with recursive, iterative, and static unrolling
implementations. The models were trained with batch sizes of 1,
10, and 25.3

Thanks to the parallelism exploited by recursive dataflow graphs,
our implementation outperforms other implementations for the

3The original TreeRNN, RNTN, and TreeLSTM papers state that using a batch
size of 25 yielded the best model.
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Figure 7: Training throughput for the TreeRNN, RNTN, and TreeLSTMmodels with the Large Movie Review dataset. Numbers
are shown for our recursive implementation, TensorFlow’s iterative implementation, and PyTorch’s static unrolling imple-
mentation. Our recursive implementation outperforms the other frameworks for all models and all batch sizes except when
training TreeLSTM with a batch size of 25, at which point the amount of system resources is insufficient to completely paral-
lelize the computation. We did not observe any significant performance gain for the static unrolling approach when the batch
size was increased.
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Figure 8: Inference throughput for the TreeRNN, RNTN, and TreeLSTMmodels with the LargeMovie Review dataset. Measure-
ments are presented for our recursive implementation, TensorFlow’s iterative implementation, and PyTorch’s static unrolling
implementation. Our recursive implementation outperforms the other frameworks for all models and all batch sizes.

TreeRNN and RNTN models at all batch sizes, by up to 3.3x im-
proved throughput over the iterative implementation, and 30.2x
improved throughput over the static unrolling approach. Note that
the performance gap between the recursive and iterative approach
for the TreeRNN model is bigger than that of the RNTN model.
This is due to the fact that the TreeRNN model involves much less
computation in its recursive function body compared to the RNTN
model, therefore having bigger room for performance optimiza-
tion via computation parallelization. We will further discuss the
effectiveness of parallelization in Section 6.3.

For the TreeLSTM model, our implementation performs better
than other frameworks at batch sizes 1 and 10. On the other hand,
at a batch size of 25, our implementation is slower than the iterative
implementation. Generally, recursion has additional overheads com-
pared to iteration, including passing around arguments and return
values, caller and callee context setup, etc. We also have additional
overheads related to backpropagation, as discussed in previous

sections. Consequently, our recursive implementation exhibits ex-
cessively high resource utilization for computing large batches,
making the throughput lower than the iterative computation.

Inference throughput. Inference refers to the process of com-
puting the operation output values of the feedforward phase, stop-
ping before backpropagation. Aside from training throughput, in-
ference throughput is also a useful metric for computing the per-
formance of a neural network, indicating how quickly a deployed
model can process unseen data, e.g., in serving systems.

Figure 8 shows the inference throughput, with identical environ-
ments with the previous experiments on training throughput. Our
framework demonstrates throughput up to 5.4x higher than the it-
erative implementation, and 147.9x higher than the static unrolling
approach. Unlike training throughput, our recursive implementa-
tion greatly dominates other implementations, since our framework
can fully utilize the given resources and the additional overheads
introduced by backpropagation are not present.
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Figure 9: Validation accuracy for the binary sentiment classification task with (a) TreeRNN, (b) RNTN, and (c) TreeLSTM
models. Results are shown for training each model with the recursive and iterative implementations, using the Large Movie
Review dataset. The time to reach 93% accuracy for each setup is also plotted, showing that the recursive implementation
converges faster for all models.
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Figure 10: Training throughput for the TreeLSTMmodel on
our recursive implementation, using varying numbers of
machines for data parallelism. The performance increases
almost linearly as more machines are used for training.

Convergence.We also measured how the accuracy of the model
increases as the training progresses, in Figure 9. Since our imple-
mentation calculates numerically identical results as the iterative
implementation, the accuracy improvement per epoch is the same.
However, thanks to our higher throughput, training with our frame-
work results in faster convergence than the iterative implementa-
tion.

Training throughput with multiple machines. One way to
overcome the resource limitations is scaling out to multiple ma-
chines. Figure 10 shows how the training throughput for the Tree-
LSTM model on our recursive implementation changes, as the num-
ber of machines used in training gradually grows from 1 to 8. Uti-
lizing the well-known data parallelism technique [12], the training
throughput improves almost linearly up to 8 machines.

6.3 Analysis of Recursive Graphs:
Parallelization

The performance difference between the iterative and recursive im-
plementation of the same recursive neural network mainly comes
from the parallelization of recursive operations. In this subsection,
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Figure 11: Time taken for processing each data instance, in
the TreeLSTMmodel using the Large Movie Review dataset.
The bold lines represent the average time for each specific
sentence length in the whole dataset, and the enclosing col-
ored areas represent the range of time taken to process the
specific length of sentences. No batching is used for this ex-
periment. As the number of words inside a data instance
increases, our recursive implementation outperforms the
iterative implementation thanks to the parallelized execu-
tion of tree cells. For inference, the computation load is low
enough for the framework to utilize system resources with-
out hitting the resource limit, and the processing time of the
recursive implementation isO (loдN ), whereN is the number
of words.

we analyze how the performance varies depending on various as-
pects related to parallelization.

Sentence length. A close inspection of the training time per
data instance sorted by sentence length gives us interesting results.
As shown in Figure 11, the time required for processing a single
sentence generally increases as sentences become longer, regardless
of whether the implementation is based on native TensorFlow or
our recursive implementation. This is an expected phenomenon,
because longer sentences form larger tree structures consisting of
more cells which require more computation.
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Batch size Throughput (instances/s)
Balanced Moderate Linear

1 46.7 27.3 7.6
10 125.2 78.2 22.7
25 129.7 83.1 45.4

Table 1: Throughput for the TreeRNN model implemented
with recursive dataflow graphs, using datasets of varying
tree balancedness. The balanced dataset exhibits highest
throughput thanks to the high degree of parallelization, but
at the same time does not improve as well as the linear
dataset when the batch size increases from 1 to 25, because
there is only a small roomof performance improvement left,
w.r.t parallelization.

However, there is a clear difference in the increasing slope; the
training time grows at a steeper slope for TensorFlow than that
of our implementation. This is because the recursive implemen-
tation allows tree cells to be processed concurrently, whereas the
iterative TensorFlow implementation is only capable of processing
one tree cell at a time. Theoretically, our implementation is able
to process a tree structure consisting of N cells in O (loдN ) time
(native TensorFlow requiresO (N ) time), though the parallelization
effect is diminished by the framework overhead and therefore the
performance is more close to a linear trend rather than a logarith-
mic trend. On inference workloads with much less resource needs,
the trend is clearly closer to a logarithmic scale.

Balancedness of trees. To analyze the influence of tree bal-
ancedness on training throughput on our recursive implementation,
we prepared several modified versions of the Large Movie Review
dataset, that contain the same sentences as the original dataset
but have different parse tree shapes. Specifically, we prepared 1) a
balanced dataset consisting of only complete binary trees, 2) amod-
erate dataset that contains moderately balanced binary trees, and
3) a linear dataset comprising only extremely unbalanced binary
trees.

Table 1 shows the throughput of training the TreeRNN model
using these three datasets. For all batch sizes, the training through-
put on the balanced dataset is the highest, while the throughput
on the linear dataset is the lowest. This trend occurs because the
maximum possible execution concurrency of a tree is affected by
the balancedness of the tree. A full binary tree of N cells can be
processed concurrently with at most N+1

2 threads, because all N+12
leaf nodes are mutually independent. On the other hand, an ex-
tremely unbalanced binary tree can be processed with only one or
two threads at a time due to the linearity of the tree. As a result, our
implementation can train input data of balanced trees with greater
throughput than input data of unbalanced trees.

Resource Utilization. Another interesting fact in Table 1 is
that the training throughput on the linear dataset scales better than
the throughput on the balanced dataset, as the batch size increases.
For the balanced dataset, the recursive implementation efficiently
utilizes many threads to process the data even at a small batch size
of 1, and thus increasing the batch size leads to a relatively small
speed boost. On the contrary, for the linear dataset, the recursive

Batch
size

Throughput (instances/s)
Inference Training

Iter Recur Fold Iter Recur Fold

1 19.2 81.4 16.5 2.5 4.8 9.0
10 49.3 217.9 52.2 4.0 4.2 37.5
25 72.1 269.9 61.6 5.5 3.6 54.7

Table 2: Throughput for processing the TreeLSTMmodel on
our recursive framework, Fold’s folding technique, and Ten-
sorFlow’s iterative approach, with the Large Movie Review
dataset. The recursive approach performs the best on infer-
ence with efficient parallel execution of tree nodes, while
the folding technique shows better performance on training
thanks to its GPU exploitation.

implementation fails to efficiently make use of CPU resources and
thus the performance gain provided by increasing the batch size is
relatively high.

6.4 Comparison with Folding
The performance improvement of our recursive framework dis-
cussed in previous subsections comes from executing multiple tree
nodes in parallel. On the other hand, another approach for effi-
ciently executing recursive neural networks exists: identifying con-
currently executable nodes and batching them into a single node
to be run on GPUs. We refer to this technique as folding, following
the name of a framework, TensorFlow Fold [15], that implements
this technique.

The folding technique hardly suffers from resource limitations,
as GPUs are very efficient in batching computations. However,
batching multiple nodes leads to overheads that are not present in
other approaches. Due to the various tree structures in the input
data, the batching decision must be done in a depth-wise manner,
thus the ungrouping and regrouping of tree nodes across multiple
depths lead to numerous memory reallocations and copies. More-
over, folding is applicable only if the tree structure of the input
data is known before executing the computation; for dynamically
structured models the folding technique cannot be implemented.
Here, we discuss and compare our recursive framework with the
folding technique. Experiment results for folding were obtained
using the TensorFlow Fold framework.

6.4.1 Statically StructuredModels. Table 2 compares the through-
put of performing inference and training on the TreeLSTM model
using our implementation, the iterative approach, and the folding
technique. The amount of resources is sufficient for executing for-
ward computations, and therefore our framework outperforms the
folding technique for the inference task with up to 4.93x faster
throughput. Unlike folding, the recursive approach does not have
any overheads regarding batch regrouping, since the calculated
values can be directly passed between caller and callee SubGraphs.

However, when the resource usage is high, not every scheduled
tree node in the worker ready queue can be executed concurrently,
even if the dependencies have been fully resolved. While the scala-
bility of the recursive approach is limited by this drawback for the
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Batch size Throughput (instances/s)
Iterative Recursive Folding

1
64

0.30
0.34

5.59
9.30 Not supported

Table 3: Throughput for evaluating the TD-TreeLSTMmodel
on our recursive framework and TensorFlow’s iterative im-
plementation, on batch sizes of 1 and 64.4 Being able to exe-
cute tree nodes in parallel lets our framework perform bet-
ter than the iterative approach. Fold’s folding technique is
inapplicable to the TD-TreeLSTM model.

training task, the folding technique can exploit the GPU and scales
better. As a result, the folding technique performs better than the
recursive approach for the training task. We can improve the perfor-
mance of the recursive approach by conditionally deciding whether
to batch the operations or not similar to the folding technique, and
we leave this as future work.

6.4.2 Dynamically Structured Models. While the models pre-
sented in the previous sections demand support for dynamic con-
trol flow, there is yet another collection of models that boast an
even greater degree of dynamism, in which the model structure
is gradually formed depending on intermediate values calculated
from prior steps. Top-down TreeLSTM [33] (TD-TreeLSTM) is a
dynamic model proposed for sentence completion and dependency
parsing. When a trained model receives root node information as
an input, the model can generate child nodes based on the infor-
mation and completes the rest of the tree sentence. The decision of
generating a child node or stopping tree expansion is conditionally
made based on the computed value of the current node at runtime,
so the structure of the complete tree is not known before actually
executing the graph. DRNN [2] is a neural network model that
can generate tree-structured data from sequences, and therefore
the tree structure in unknown before graph execution, similar to
TD-TreeLSTM. The Hierarchical Mixtures of Experts [11, 24] model
has a similar structure, where the whole tree structure is decided at
runtime. The network structure of HMRNN [5] is also dynamically
determined by the intermediate computation values.

Our framework performs well for such dynamic models. Table 3
shows the throughput of the sentence completing task with the
TD-TreeLSTM model. Our implementation performs better than
the iterative approach by up to 18.6x, since multiple tree nodes are
executed in parallel. For this kind of model, techniques that rely
on heavy preprocessing of input data to batch operations (folding)
are ineffective because the model structures are unknown until the
main computation. We note that it is impossible to express such
models using the API provided by the Fold framework.

7 RELATEDWORK
Embedded control flow frameworks. DL frameworks with a
computation graph comprised of control flow operators along with

4We follow the suggestions of the original TD-TreeLSTM paper to use a batch
size of 64.

the mathematical operators to represent a DL job are called embed-
ded control flow frameworks [1, 4, 6, 30]. This class of frameworks
does not use the programming language’s control flow support
(e.g., Python’s if clause) for representing dynamic control flow.
Instead, they provide certain primitives for embedding dynamic
control flow in the dataflow graph; the framework cores evaluate a
boolean expression and decide what to apply for the next operation
at graph execution time.

Although our implementation is based on the embedded control
flow framework TensorFlow [1], the key difference is the ability
to express recursive functions. In our implementation, a user can
define an arbitrary function and use it as an operation to compose
a graph. The arbitrary function can call another function including
itself without restriction, allowing recursive definitions of func-
tions. TensorFlow and Theano [30] also let users write user-defined
functions, but do not support recursion; the user must not create a
cycle of dependencies between functions.

Non-embedded control flow frameworks. Unlike embedded
control flow frameworks, PyTorch [20], DyNet [19], and Chainer [31]
do not embed control flow operators inside their computation
graphs. Rather, the computation occurs along with the dynamic
control flow of the host language, removing the need to embed the
control flow operators inside the computation graph. In other words,
these non-embedded control flow frameworks behave just like nu-
merical computation libraries such as NumPy [32] and MKL [10], so
one can directly exploit the underlying language’s abilities for han-
dling conditional branches, loops, and recursive functions. Thanks
to this behavior, a user can easily build a prototype of a new neural
network architecture or optimization algorithm.

However, since neural networks are usually trained for numerous
steps until they converge, non-embedded control flow frameworks
suffer from repetitive construction of graphs composed of hun-
dreds or thousands of nodes, resulting in substantial object creation
and removal overhead. More importantly, embedded control flow
frameworks employ graph compilation techniques like operation
fusion or in-place operation conversion to optimize execution, but
non-embedded control flow frameworks cannot since they do not
reuse the graphs.

Recursive dataflow graphs are designed to provide a similar level
of programmability to non-embedded control flow frameworks,
without losing optimization opportunities by using an embedded
control flow framework (TensorFlow) to declare computations with
recursion.

Other frameworkswith recursion support.TensorFlow Fold
[15], a library for handling models with dynamic computation, al-
lows recursion for writing computation graphs. Fold provides a
number of new APIs for creating and managing blocks (sets of low-
level operations). A block behaves as a scheduling unit to enable
dynamic batching of different computation graphs. Using these
blocks, Fold constructs an execution loop that resembles recursion
and starts running the loop from base cases, wiring intermediate
results to the appropriate positions for subsequent recursive cases.
From the perspective of programmability, Fold provides a whole
new set of functional programming style APIs to preprocess input
data and build the computation graph. It is required to mix the
control flow API of Fold and the computational API of TensorFlow
to represent a complete DL job, which is not a trivial task. Also,
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since the structure and execution order of the computation graph
becomes completely different after graph preprocessing, it becomes
impossible to pinpoint the location of errors on failures, resulting
in poor debuggability.

On the other hand, our framework adds a simple abstraction,
SubGraph, to the programming model to support recursion. Sub-
Graphs can be used with existing operations analogously and does
not import any additional execution details other than those already
provided by the underlying embedded control flow framework.
Moreover, the final computation graph of InvokeOps retains the
original position information of SubGraphs, allowing the same
debugging experience as the underlying framework.

CIEL [17] is a dynamic task (operator) creation framework that
allows users to declare data processing jobs recursively. The oper-
ators of CIEL are relatively more coarse-grained compared to DL
frameworks, which means the number of recursion calls is not large.
The different granularity comes from the characteristics of the tar-
get domain; CIEL targets batch processing applications, whereas
recursively defined graphs were designed for deep learning. More
fundamentally, CIEL cannot be integrated with modern DL frame-
works because CIEL does not consider DL-specific mechanisms
such as backpropagation or typed operator definitions, which are
highly important for DL applications.

8 CONCLUSION
In this paper, we have introduced recursive declarations and recur-
sive execution mechanisms for running recursive neural networks
on top of existing embedded control flow frameworks. With re-
cursively defined computation graphs, recursive neural networks
can be implemented in a fashion that better portrays the recursion
aspect, and be executed efficiently by letting the framework exploit
parallel execution of computations, both of which were very diffi-
cult to achieve on existing frameworks due to the lack of support
for recursion. To achieve this goal, we designed and implemented
a programming model and a runtime execution model, including
automatic differentiation support for deep learning jobs. We have
demonstrated the expressive power and performance of recursive
graphs by implementing various recursive neural network models
using our programming model and comparing them with itera-
tive and unrolling implementations, showing that recursive graphs
outperform other approaches significantly.
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