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1. Introduction

Being able to use a cluster of GPU resources is favorable
especially for machine learning researchers, as training neu-
ral nets typically requires at least tens of GPUs in order to
finish within feasible time. Neural networks can be made to
be trainable on multiple devices, which are CPUs or GPUs
in multi-machines, to speed up training and improve con-
vergence. This is further facilitated by the introduction of
deep learning systems such as TensorFlow [2], MXNet [4]
and Caffe?2 [1]]; such frameworks allow users to easily utilize
multi-machine, multi-GPU environments to train networks,
to a certain degree.

Unfortunately, extending single-machine, single-GPU
neural net models to work in distributed environments is
not a trivial job for common machine learning researchers.
In most deep learning frameworks [[1,[2,/4]], a deep learning
job is represented as a computation graph, and the compu-
tation graph needs to be changed for distributed environ-
ments, which requires partitioning model parameters across
machines to balance out communication overheads, as well
as replicating and assigning graph operators to devices so
that hardware resources can cooperate to train a model.

To this end, we introduce Parallax, an auto-parallelization
module that helps machine learning researchers extend their
single-model code to operate in data parallelism with multi-
GPU and multi-machine. Parallax receives a single-device
graph, analyzes the graph, then transforms it into a multi-
machine, multi-GPU version of the computed settings. The
automatically transformed graph can finally be run in dis-
tributed environments.

Preliminary experiments show that with the help of Paral-
lax, the ResNet-50 [9] model can be trained on a total of 12
GPUs across 3 machines with sublinear scale-out improve-
ments in computation throughput. We also discuss several
extensions on Parallax, including the application of model
parallelism strategies to boost performance for models with
relatively large parameters, as well as hybrid parallelism
strategies that utilize both data parallelism and model par-
allelism.
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2. Parallax Overview

Parallax provides transparent data parallelism, automatically
executing single-GPU computation graphs on distributed en-
vironments. Parallax is implemented on top of one of the
state-of-the-art deep learning frameworks, TensorFlow [2].
We assume the parameter server (PS) architecture [5}/6L/11],
in which server processes store network parameters and
worker processes perform the main computation according
to the given computation graph with one or more GPUs.
Note that Parallax is not necessarily bound to the PS archi-
tecture; Parallax can be implemented on other deep learning
frameworks that do not provide explicit PS abstractions such
as Caffe2 [1]).

Execution Model The following steps outline the overall
execution model of Parallax. First, the user gives a compu-
tation graph and cluster information to a machine in the
cluster, which becomes in charge of initiating the auto-
parallelization mechanism. Next, the computation graph is
analyzed, and sent to other machines in the cluster to be
transformed into a distributed version. Note that the transfor-
mation process is not necessarily all done in one machine;
rather, the master machine just determines how the input
graph should be transformed and sends that information, to-
gether with the input graph itself, to the other machines. It
is only after the transform information arrives at other ma-
chines that the input graph is converted to its distributed
version. Such a parallelization mechanism is required be-
cause the graph transformation process can take a significant
amount of time if the target graph is large, potentially mak-
ing the master machine a bottleneck. Finally, each machine
executes its graph, resulting in distributed training.

Graph Analysis  Parallax analyzes the input graph to group
consisting operators into several categories, in order to de-
cide what action to apply to which operator. Parallax auto-
matically classifies operators according to the structure of
typical deep learning jobs, which contain feedforward and
backpropagation computation operators and optimizers for
updating computed gradients. This reduces user efforts for
manually parsing the computation graph.
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Figure 1: Graph conversion for various operators.

Graph Conversion Parallax parallelizes the execution of
deep learning jobs by transforming their corresponding com-
putation graphs, replicating graph operators and partitioning
model parameters across machines.

The replication and device assignment policies of oper-
ators differ per operator type: main computation operators,
weights, and weight update operators (Figure|T).

Main computation operators that are used to generate
gradients are replicated as much as the number of worker
and given to each worker (Model and Grads in Figure [I).
This allows workers to perform computation in parallel on
different batches of data, i.e. data parallelism.

Network parameters, or weights, are evenly partitioned
across servers, based on their sizes (Weights in Figure [I).
Unlike computation operators, weights must be shared
across workers and are not replication targets. Rather, in
order to balance out communication overheads across ma-
chines, Parallax assigns weights to each device while keep-
ing the deviation of communication overhead as low as pos-
sible, partitioning large-sized weights into smaller portions
if necessary.

Weight update operators are treated slightly differently
from the previous categories. In fact, the replication pol-
icy depends on the communication scheme: asynchronous
training or synchronous training. For asynchronous training,
gradients produced by workers are applied to network pa-
rameters without any coordination, thus weight update op-
erators are simply replicated, one for each worker (Updates
in Figure[T[(a)). On the other hand, for synchronous training,
gradients are aggregated before being applied to the parame-
ters, therefore weight update operators are not replicated. In-
stead, Parallax inserts additional aggregation operators that
collect gradients from each worker. The aggregators wait un-
til all workers send their gradients, and then pass the gradient
means to the weight update operators (Update and Aggregate
in Figure[Tb)).

3. Preliminary Evaluation

We experiment on a homogeneous GPU cluster of three
servers, each of which is shipped with four NVIDIA Titan

#GPU Throughput Convergence speed

Top-1 Top-5

1 88 0.04 0.10
4 324 0.10 0.18
12 838 0.12 0.20

Table 1: Evaluation of ResNet-50 on 1, 4, and 12 GPUs.
Throughput and convergence speed are measured as the
number of processed instances per second and the improved
accuracy per hour, respectively.

Xp GPUs. Each GPU processes a batch of 64 data instances,
therefore using more GPUs increases the total batch size.
The servers are connected via Mellanox ConnectX-4 cards
with IB (100Gb/s).

We trained ten models using Parallax, including CNNss [[7,
9,14]], RNNs [[17], encoder-decoder models [3}/10], and mix-
ture models [8l/13}/15/{16]]. In this paper, we present the train-
ing results of the ResNet-50 [9] model with synchronous
SGD on 100K images that were randomly sampled from the
ImageNet [12]] dataset. We compare a 4-GPU setting of a
single machine and a 12-GPU setting of three machines with
a single-GPU baseline.

Table [T] shows the evaluation results. The computation
throughput increases sublinearly as more GPUs are used,
and the convergence speed improves as well.

4. On-going Work

Automatic Model Parallelism In model parallelism, de-
vices cooperate to process a single mini-batch data by dis-
tributing the operators of a graph across themselves, ex-
changing neuron activation values instead of model param-
eters. We are extending Parallax to determine the most effi-
cient partitioning scheme for model parallelism during graph
analysis, by putting partition boundaries between operators
that communicate small activation values to minimize the
total communication overhead, while balacing out the com-
putation overhead for devices at the same time. This is es-
pecially effective for large models that do not fit in a single
GPU device due to GPU memory constraints and thus must
be trained on more than one GPU.

Automatic Hybrid Parallelism Hybrid parallelism is a
mixed form of parallelism; hardware resources are sorted
into several groups, and the devices in each group hold a
model replica. This achieves data parallelism by training
multiple replicas for a single model while also achieving
model parallelism as each replica is processed by more than
one device, though determining the number of replicas and
the number of devices per replica is not straightforward. We
are expanding Parallax to predict the optimal hybrid paral-
lelism strategy for a model under a distributed environment,
through systematic calculation of communication overheads
and computation throughput per replica setting.
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