
Towards High-Performance Prediction Serving Systems
Yunseong Lee

Seoul National University
yunseong@snu.ac.kr

Alberto Scolari
Politecnico di Milano

alberto.scolari@polimi.it

Matteo Interlandi
Microsoft

mainterl@microsoft.com

Markus Weimer
Microsoft

mweimer@microsoft.com

Byung-Gon Chun
Seoul National University

bgchun@snu.ac.kr

1 INTRODUCTION
Many Machine Learning (ML) frameworks such as Google Ten-
sorFlow [3], Facebook Caffe2 [2], Scikit-learn [5], or Microsoft’s
Internal ML Toolkit (IMLT) allow data scientists to declaratively
author sequences of transformations to train models from large-
scale multi-dimensional input datasets. The sequences internally
are represented as Directed Acyclic Graphs (DAGs) of operators
comprising data transformations and featurizers (e.g., string tok-
enization, hashing, etc.), and ML models (e.g., Neural networks,
Linear models, etc.).1

When trained DAGs are served for prediction, the full set of
operators is deployed altogether to massage and featurize the raw
input data points before ML model scoring. Training and prediction
DAGs have however different system characteristics: for instance
ML models at training time have to scale over large datasets, while,
once trained, they can behave as other regular featurizers and data
transformations; furthermore, prediction DAGs are often surfaced
for direct users’ access and therefore require low latency, high
throughput, and high predictability. Specifically, prediction systems
have three main performance requirements in order to be usable
by consumers and be profitable for ML-as-a-service providers: (R1)
latency has to be minimal—in the order of milliseconds—and pre-
dictable because scoring is often one segment in more complex
services (e.g., smart phone or web applications) which potentially
provide a Service Level Agreement (SLA); (R2) small resource us-
age—such as memory and CPU—to save operational costs; and (R3)
high throughput to handle as many concurrent requests as possi-
ble. Existing prediction serving systems, such as Clipper [1] and
IMLT itself, focus mainly on ease of deployment, whereby model
DAGs are considered as black box and therefore only certain “DAG-
agnostic” set of optimizations such as caching and buffering are
possible. The black box approach works well when the models to
be served are small in number, while our experiments show that
there is a limit to the number of models that can be served on a

1IMLT implements dozens of pre-defined operators and ML algorithms; IMLT is exten-
sible and users implement their own custom operators and ML algorithms in C#.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SysML, Feb 2018, Stanford, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

single machine (related to R2) without loosing on throughput and
latency (requirements R1 and R3).

To address the aforementioned performance requirements, in
this paper we sketch the design of a system, currently under de-
velopment at Microsoft, for scoring models authored in IMLT2,
borrowing ideas from the database and systems community. Start-
ing from the observation that trained DAGs often share operators
and parameters (such as weights and dictionaries used within oper-
ators), we introduce a Parameter Store where operators’ parameters
are consolidated and shared in order to minimize memory footprint
(R2). A Logical Representation of the DAG of operators composing
the model is saved along with the related parameter mappings. To
address R1, logical representations of models are compiled into
stages: single scheduling units where multiple operators are exe-
cuted together to reduce overheads such as memory allocation and
chains of virtual function invocations. Lastly, event-based schedul-
ing of stages [6] is used to increase throughput through DAGs (R3)
while maintaining target latency and memory footprint.

Initial results are encouraging: over 300 DAGs used internally at
Microsoft, compared to IMLT our prototype is able to improve the
memory footprint by 43.1× and reduce the latency by up to 87×.

2 INITIAL DESIGN AND EVALUATION
Based on the above observations, we argue that the three system
requirements R1, R2, and R3 can be met if we optimize the ex-
ecution of prediction both horizontally end-to-end and vertically
among multiple model DAGs.
End-to-end Optimizations: The operationalization of models for
prediction should focus on execution units making optimal deci-
sions on how data is processed while maintaining low and pre-
dictable latency (R1). Such execution units should: (1) avoid mem-
ory allocation on the data path; (2) avoid creating separate routines
per operator, which are sensible to costly branch mis-prediction and
poor data locality [4]; and (3) avoid reflection and JIT compilation.
Multi-model Optimizations:ML frameworks such as IMLT have
a known set of operators, and models trained over similar datasets
have a high likelihood of also sharing parameters. To take full
advantage of this, shareable components have to be uniquely stored
in memory and reused as much as possible to achieve optimal
memory usage (R2). Similarly, scheduling units should be shared
at run-time and resources properly managed, such that multiple
prediction requests can be evaluated in a pipelined fashion (R3).

2IMLT is a C# library that runs on a managed runtime (e.g., garbage collection and
Just-In-Time (JIT) compilation).

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML, Feb 2018, Stanford, CA, USA Yunseong Lee, Alberto Scolari, Matteo Interlandi, Markus Weimer, and Byung-Gon Chun

Logical Representation

Parameter Store

DAG1
Mapping

Layer

Caching

Layer

Logical

Stages

DAG2

Operators’

 Parameters

S1
S2 S3

S1
S2 S3

(a) Before serving predictions, DAGs are converted to sequences of
stages. Operators’ parameters are cached into the Parameter Store.
The Logical Representation keeps all themapping information above.

Scheduling

Layer

Logical Representation
DAG1 DAG2

<DAG1, “foo”>

Physical

Stages
Thread-poolEvent Queue

S1 S2 S3 S1 S2 S3

Parameter Store

(b) At prediction time, physical stages are assembled from the Logi-
cal Representation. Each stage is composed of the parameters fetched
from the Parameter Store, an event queue, and a thread-pool.

Figure 1: System design optimized for prediction serving.

Following the above guidelines, we have designed a prototypical
prediction system composed of the following layers: a Caching
Layer where operators and parameters are globally maintained
into a Parameter Store (PS) and shared among DAGs; a Mapping
Layer where a Logical Representation (LR) of operators composing
DAGs, and related parameters, is kept. Logical representations are
analyzed and compiled Ahead-Of-Time (AOT) into efficient physical
units called stages where memory resources and threads are pooled.
Finally, a Scheduling Layer is in charge of the execution of each
stage. Figure 1 pictorially summarizes the above description; note
that only the latter part is executed at prediction time, whereas the
parameters and logical-to-physical mapping are computed offline.

Next, we will describe each layer composing our envisioned
high-performance prediction system.

0 50 100 150 200 250
Number of DAGs

1

43.1

M
em

or
y
us

ag
e

(n
or
m
al
ize

d,
 lo

g-
sc

al
ed

)

Without cache
With cache

Figure 2: Cumulativememoryusage of themodelDAGswith
and without caching layer.
Caching Layer: The Caching Layer design is based on the insights
that many DAGs have similar structures; sharing operators and,
when possible, also operators’ state (parameters) can considerably
improve memory footprint, and consequently the number of pre-
dictions served per machine. An example is language dictionaries
used for input text featurization, which are often in common among
many models and use a relatively large amount of memory.

The PS is populated offline: when a new model DAG is deployed,
the operators involved and their parameters are identified; new
parameters are kept in the PS, while parameters that already exist
are ignored and the DAG is rewritten to reuse the previously loaded
one. The caching layer enables considerable memory savings, rep-
resented in Figure 2: for the 300 example DAGs we analyzed, the
Caching Layer reduced the memory consumption by 43.1×.
Mapping Layer:While the Parameter Store is populated, the map-
ping layer builds a logical representation of each input model DAG
composed of operators’ metadata (e.g., type) and links to related
parameters (state) in the Caching Layer. Offline, the logical repre-
sentation is AOT-compiled into stages. Inside each stage, (logical)

Performance improvement (normalized, log-scaled)

Staging

IMLT

1750

538
3.3x

87

1

3.3x

Cold
Hot

Figure 3: Performance improvement (in terms of latency,
higher is better) to execute a single DAG.

operators are fused together when possible to improve memory
locality and end-to-end performance. Each stage is designed so
that no memory allocation occurs along the data path: when in-
stantiated, each stage is dynamically fed with a set of pre-allocated
buffers and the model-specific parameters stored in the Caching
Layer. By compiling operators into stages and by sharing common
state, the Mapping Layer is able to obtain a considerable reduction
in latency as shown in Figure 3: namely a 87× speedup in latency
for the cold case and a 3.3× speedup for the hot case.
Scheduling Layer: Once model DAGs are assembled and com-
piled into stages (offline), they are deployed for execution in an
environment where they share resources with other DAGs. The
Scheduling Layer coordinates the execution of multiple stages via
an event-based scheduling mechanism similar to SEDA [6]: each
stage is equipped with an input buffer and a thread pool; intermedi-
ate results are wrapped as events that are then routed through the
proper set of stages together with related parameters (as shown in
Figure 1b). Benefits of this mechanism are that the Scheduling Layer
can assign more resources to slow stages/operators. Orthogonal
techniques such as batching at the level of stages or DAGs, can be
also employed as in other prediction serving systems.

The drawback of this approach is that overheads due to buffering
and context switching can be introduced on the data path. Such
overheads are, however, related to the system load and therefore,
controllable by the scheduler. Exploring this trade-off is in progress.

Acknowledgments
Yunseong Lee and Byung-Gon Chun were partly supported by
Institute for Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No.2017-0-
01772, Development of QA systems for Video Story Understanding
to pass the Video Turing Test and No.R0126-17-1093, (SW Star Lab)
Development of a Unified High-Performance Stack for Diverse Big
Data Analytics).

Towards High-Performance Prediction Serving Systems SysML, Feb 2018, Stanford, CA, USA

REFERENCES
[1] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica.

Clipper: A low-latency online prediction serving system. In NSDI, 2017.
[2] Facebook. Caffe2, 2017.
[3] Google. TensorFlow, 2016.
[4] T. Neumann. Efficiently compiling efficient query plans for modern hardware.

Proc. VLDB Endow., 4(9):539–550, June 2011.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[6] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-conditioned,
scalable internet services. In SOSP, 2001.

	1 Introduction
	2 Initial Design and Evaluation
	References

